Турбулентный режим движения жидкости. Ламинарное и турбулентное движение жидкости Особенности турбулентного движения жидкости

Турбулентное движение жидкости наиболее часто встречается как в трубах, так и в различных открытых руслах. В связи со сложностью турбулентного движения механизм турбулентности потока до настоящего времени все еще недостаточно полно изучен.

Для турбулентного движения характерно неупорядоченное перемещение частиц жидкости. Происходит движение частиц в продольном, вертикальном и поперечном направлениях, в результате этого наблюдается интенсивное перемешивание их в потоке. Частицы жидкости описывают весьма сложные траектории движения. При соприкосновении турбулентного потока с шероховатой поверхностью русла частицы приходят во вращательное движение, т.е. возникают местные вихри различного размера.

Скорость в точке турбулентного потока жидкости получила название местной (актуальной) мгновенной скорости . Мгновенная скорость по координатным осям х , у , z - , ,:

- продольная составляющая скорости по направлению движения потока;

- окружная составляющая;

- поперечная составляющая скорости.

.

Все составляющие мгновенной скорости (, ,)меняются во времени. Изменения составляющих мгновенной скорости во времени называются пульсацией скорости по координатным осям. Следовательно, турбулентное движение в действительности является неустановившимся (нестационарным).

Скорости в определенной точке турбулентного потока жидкости можно измерить, например, с помощью лазерного прибора (ЛДИС). В результате измерений зафиксируется пульсация скоростей по направлениям х , у , z .

На рис. 4.7 изображен график пульсации продольной мгновенной скорости во времени при условии установившегося движения жидкости. Продольные скорости непрерывно изменяются, колебания их происходят около некоторой постоянной скорости. Выделим на графике два достаточно больших отрезка времени и Определим за время и среднюю по времени скорость .

Рис. 4.7. График пульсации продольной мгновенной скорости

Осредненная (средняя по времени) скорость может быть найдена так:

и
. (4.70)

Величина будет одинаковой на отрезках времени и. На рис. 4.7 площадь прямоугольников высотой и шириной или
будет равновелика площади, заключенной между пульсационной линией и значениями времени (отрезок и
), что и следует из зависимостей (4.70).

Разность между фактической мгновенной скоростью и осредненным значением - пульсационная составляющая в продольном направлении движения :

. (4.71)

Сумма пульсационных скоростей за принятые отрезки времени в рассматриваемой точке потока будет равна нулю.

На рис. 4.8 показан график пульсации поперечной мгновенной скорости . Для рассматриваемых отрезков времени

и
. (4.72)

Рис. 4.8. График пульсации поперечной мгновенной скорости

Сумма положительных площадей на графике, ограниченном пульсационной кривой, равна сумме отрицательных площадей. Пульсационная скорость в поперечном направлении равна поперечной скорости ,
.

В результате пульсации между соседними слоями жидкости возникает интенсивный обмен частицами, что приводит к непрерывному перемешиванию. Обмен частицами и, соответственно, массами жидкости в потоке в поперечном направлении приводит к обмену количеством движения (
).

В связи с введением понятия осредненной скорости турбулентный поток заменяется моделью потока, частицы которого движутся со скоростями, равными определенным продольным скоростям , и гидростатические давления в разных точках потока жидкости будут равны осредненным давлениям р . Согласно рассматриваемой модели поперечные мгновенные скорости
, т.е. будет отсутствовать поперечный массообмен частицами между горизонтальными слоями движущейся жидкости. Модель такого потока называется осредненным потоком. Такую модель турбулентного потока предложили Рейнольдс и Буссинеск (1895-1897). Приняв такую модель, можно рассматривать турбулентное движение как движение установившееся . Если в турбулентном потоке осредненная продольная скорость является постоянной, тогда условно можно принять струйчатую модель движения жидкости. На практике при решении инженерных практических задач рассматриваются только осредненные скорости, а также распределение этих скоростей в живом сечении, которые характеризуются эпюрой скоростей. Средняя скорость в турбулентном потокеV - средняя скорость из осредненных местных скоростей в разных точках.


(от лат. turbulentus - бурный, беспорядочный), форма течения жидкости или газа, при к-рой их элементы совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости или газа (см. ТУРБУЛЕНТНОСТЬ). Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом тв. тел, а также т. н. свободные Т. т.- струи, следы за движущимися относительно жидкости или газа тв. телами и зоны перемешивания между потоками разной скорости, не разделёнными к.-л. тв. стенками. Т. т. в каждом из перечисленных случаев отличается от соответствующего ему ламинарного течения как своей сложной внутр. структурой (рис. 1), так и распределением

Рис. 1. Турбулентное течение.

осреднённой скорости по сечению потока (рис. 2) и интегральными хар-ками - зависимостью средней по сечению или макс. скорости, расхода, а также коэфф. сопротивления от Рейнольдса числа Re, Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболич. профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей

Рис. 2. Профиль осреднённой скорости: а - при ламинарном течении; б - при турбулентном течении.

кривизной в центр. части течения. За исключением тонкого слоя около стенки профиль скорости описывается логарифмич. законом (т. е. скорость линейно зависит от логарифма расстояния до стенки).Коэфф. сопротивления l=8tw/rv2cp (где tw - напряжение трения на стенке, r - плотность жидкости, vср - средняя по сечению скорость потока) связан с Re соотношением:

l1/2 = (1/c?8) ln (l1/2Re)+B,

где c. и B - числовые постоянные. В отличие от ламинарных пограничных слоев, турбулентный пограничный слой обычно имеет отчётливую границу, беспорядочно колеблющуюся со временем (в пределах 0,4 б - 1,2d, где d - расстояние от стенки, на к-ром осреднённая скорость равна 0,99 v, a v - скорость вне пограничного слоя). Профиль осреднённой скорости в пристенной части турбулентного пограничного слоя описывается логарифмич. законом, а во внеш. части скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону. Зависимость l от Re здесь имеет вид, аналогичный указанному выше.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: в каждом сечении c=const любого из этих Т. т. на не слишком малых расстояниях х от нач. сечения можно ввести такие масштабы длины и скорости L(x) и v(x), что безразмерные статистич. хар-ки гидродинамич. полей (в частности, профили осреднённой скорости), полученные при применении этих масштабов, будут одинаковыми во всех сечениях.

В случае свободных Т. т. область пр-ва, занятая завихрённым Т. т., в каждый момент времени имеет чёткую, но очень неправильную форму границ, вне к-рых течение потенциально. Зона перемежающейся турбулентности оказывается здесь значительно более широкой, чем в пограничных слоях.

Физический энциклопедический словарь. - М.: Советская энциклопедия ..1983 .

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ

Форма течения жидкости или газа, при к-рой вследствие наличия в течении многочисл. вихрей разл. размеров жидкие частицы совершают хаотич. неустановившиеся движения по сложным траекториям (см. Турбулентность), в противоположность ламинарным течениям с гладкими квазипараллельными траекториями частиц. Т. т. наблюдаются при определ. условиях (при достаточно больших Рейнольдса числах )в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепло-и массообмена.

Профиль осреднённой скорости Т. т. в трубах и каналах отличается от параболич. профиля ламинарных течений меньшей кривизной у оси и более быстрым возрастанием скорости у стенок, где за исключением тонкого вязкого подслоя (толщиной порядка , где v - вязкость, - "скорость трения", t-турбулентное напряжение трения, r-плотность) профиль скорости описывается универсальным по Re логарифмич. законом:

где y 0 равно при гладкой стенке и пропорционально высоте бугорков при шероховатой.

Турбулентный пограничный слой в отличие от ламинарного обычно имеет отчётливую границу, нерегулярно колеблющуюся во времени в пределах где d- расстояние от стенки, на к-ром скорость достигает 99% от значения вне пограничного слоя; в этой области скорость растёт с удалением от стенки быстрее, чем по логарифмич. закону.

Струи, следы и зоны перемешивания обладают приблизит. автомодельностью: с расстоянием x от нач. сечения масштаб длины L растёт как х т, а масштаб скорости U убывает как х -n , где для объёмной струи т = п = 1, для плоской т =1, n =1/2, для объёмного следа т = 1/3, n = 2/3, для плоского следа т=п=1/2, для зоны перемешивания m= 1, n = 0. Граница турбулентной области здесь также отчётливая, но нерегулярной формы и колеблется шире, чем у пограничных слоев, в плоском следе - в пределах (0,4-3,2) L.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Абрамович Г. Н., Теория турбулентных струй, М., 1960; Монин А. С., Яглом А. М., Статистическая гидромеханика, 2 изд., ч . 1, СПб., 1992. А. С. Монин.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия .Главный редактор А. М. Прохоров .1988 .



Современная теория турбулентного течения не позволяет получить из уравнений Стокса (или Навье - Стокса) зависимость скорости от координат площади поперечного сечения потока и времени v(x, у, z, t) из-за неустойчивости течения при Re > Re Kp , хотя возможности современных ЭВМ очень большие. Поэтому турбулентное течение изучают на основе полуэмпирических гипотез, которые позволяют получить зависимости между турбулентными тангенциальными напряжениями и осредненными по времени (локальными) скоростями турбулентных потоков. Рассмотрим наиболее распространенные гипотезы.

Турбулентное движение жидкости при достаточно больших значениях Re характеризуется наличием нерегулярного, беспорядочного изменения скорости со временем в каждой точке потока. Скорость непрерывно во времени и пространстве пульсирует около некоторого своего среднего значения (см. рис. 6.5), причем амплитуда пульсирующей составляющей скорости может быть сравнима с величиной среднего значения скорости. Траектории частиц жидкости чрезвычайно сложны и не могут иметь аналитического решения, так же как траектории молекул. Этот факт приводит к сильному перемешиванию жидкости. Огромное число степеней свободы частиц жидкости, как и число степеней свободы, например, у молекул моля газа, не позволяет решить задачу как о траекториях движения частиц, так и о движении в силу хотя бы того, что невозможно задать начальные условия движения всех частиц жидкости и молекул газа в какой-то момент времени. Это наводит на мысль общего в движении молекул газа и частиц жидкости. (П.С. Лаплас говорил, что если задать начальные условия положения планет в Солнечной системе и их скорости, то можно решить задачу о движении планет.)

Отметим общее и различное между движением молекул и жидкости при турбулентном режиме движения:

  • 1) хаотическое движение огромного числа молекул и частиц жидкости не позволяет рассмотреть его на основе уравнений механики, во-первых, из-за огромного числа уравнений, а во-вторых, невозможности задания начальных условий: координат и скоростей при t = / 0 ;
  • 2) если понятие молекулы более определенно, она имеет постоянную массу, размер (диаметр), то частица жидкости, «моль» жидкости, квант (частица) не имеют четкого определения, так как это статистическая характеристика; при изменении пространственного масштаба или размера частицы изменяются ее характерные параметры;
  • 3) молекула имеет среднюю длину свободного пробега, которая определяется из молекулярно-кинетической теории газа. Скорость жидкости изменяется на величину порядка средней скорости на некотором расстоянии 1, называемом длиной пути перемешивания, или масштабом турбулентности;
  • 4) взаимодействие между частицами жидкости и молекулами в газе имеет разную физическую природу. В газе молекулы взаимодействуют как диполи (полярная молекула - с полярной, полярная с поляризованной молекулой в поле полярной молекулы, молекулярное взаимодействие молекул с мгновенными дипольными моментами неполярных молекул - дисперсионное взаимодействие), а в жидкости имеется вязкое взаимодействие неупругих частиц только при их относительном движении;
  • 5) газ в целом неподвижен или скорость его движения мала по сравнению со скоростью теплового хаотического движения, кроме случаев, когда движение около- или сверхзвуковое, а если рассматривать несжимаемый газ, то скорость теплового движения всегда много больше средней скорости потока (Ма « 1).

Исходя из аналогии молекулярного движения газа и турбулентного движения жидкости Л. Прандтль в 1925 г. разработал полу- эмпирическую теорию турбулентности. Основное ее положение заключается в том, что при турбулентном перемешивании импульс частицы жидкости, переносимой в потоке за счет поперечной пуль- сационной составляющей скорости у", остается неизмененным на некотором пути 1 (как импульс молекулы на длине пути ее свободного пробега), а затем изменяется скачком. Поэтому ее и называют длиной перемешивания. Предполагается, что это расстояние моль (макрочастица или квант) жидкости проходит, не взаимодействуя с другими молями, и сохраняет постоянным свой определенный импульс. После прохождения этого пути моль жидкости смешивается с жидкостью другого слоя, отдавая ей разность импульсов.

Гидродинамика является важнейшим разделом физики, который изучает законы движения жидкости в зависимости от внешних условий. Важным вопросом, который рассматривается в гидродинамике, является вопрос определения ламинарного и турбулентного течения жидкости.

Что такое жидкость?

Чтобы лучше понять вопрос ламинарного и турбулентного течения жидкости, необходимо для начала рассмотреть, что собой представляет эта субстанция.

Жидкостью в физике называют одно из 3-х агрегатных состояний материи, которое при заданных условиях способно сохранять свой объем, но которая при воздействии минимальных тангенциальных сил изменяет свою форму и начинает течь. В отличие от твердого тела, в жидкости не возникают силы сопротивления внешнему воздействию, которые бы стремились вернуть ее исходную форму. От газов же жидкость отличается тем, что она способна сохранять свой объем при постоянном внешнем давлении и температуре.

Параметры, описывающие свойства жидкостей

Вопрос ламинарного и турбулентного течение определяется, с одной стороны, свойствами системы, в которой рассматривается движение жидкости, с другой же стороны, характеристиками текучей субстанции. Приведем основные свойства жидкостей:

  • Плотность. Любая жидкость является однородной, поэтому для ее характеристики используют эту физическую величину, отражающую количество массы текучей субстанции, которая приходится на ее единицу объема.
  • Вязкость. Эта величина характеризует трение, которое возникает между различными слоями жидкости в процессе ее течения. Так как в жидкостях потенциальная энергия молекул приблизительно равна их кинетической энергии, то она обуславливает наличие некоторой вязкости в любых реальных текучих субстанциях. Это свойство жидкостей является причиной потери энергии в процессе их течения.
  • Сжимаемость. При увеличении внешнего давления всякая текучая субстанция уменьшает свой объем, однако, для жидкостей это давление должно быть достаточно велико, чтобы незначительно уменьшить занимаемый ими объем, поэтому для большинства практических случаев, это агрегатное состояние полагают несжимаемым.
  • Поверхностное натяжение. Эта величина определяется работой, которую необходимо затратить, чтобы образовать единицу поверхности жидкости. Существование поверхностного натяжения обусловлено наличием сил межмолекулярного взаимодействия в жидкостях, и определяет их капиллярные свойства.

Ламинарное течение

Изучая вопрос турбулентного и ламинарного течения, рассмотрим сначала последнее. Если для жидкости, которая находится в трубе, создать разность давлений на концах этой трубы, то она начнет течь. Если течение субстанции является спокойным, и каждые ее слой перемещается вдоль плавной траектории, которая не пересекает линии движения других слоев, тогда говорят о ламинарном режиме течения. Во время него каждая молекула жидкости перемещается вдоль трубы по определенной траектории.

Особенностями ламинарного течения являются следующие:

  • Перемешивания между отдельными слоями текучей субстанции не существует.
  • Слои, находящиеся ближе к оси трубы, движутся с большей скоростью, чем те, которые расположены на ее периферии. Этот факт связан с наличием сил трения между молекулами жидкости и внутренней поверхностью трубы.

Примером ламинарного течения являются параллельные струи воды, которые вытекают из душа. Если в ламинарный поток добавить несколько капель красителя, то можно видеть, как они вытягиваются в струю, которая продолжает свое плавное течение, не перемешиваясь в объеме жидкости.

Турбулентное течение

Этот режим кардинальным образом отличается от ламинарного. Турбулентное течение представляет собой хаотический поток, в котором каждая молекула движется по произвольной траектории, которую можно предсказать лишь в начальный момент времени. Для этого режима характерны завихрения и кругообразные движения небольших объемов в потоке жидкости. Тем не менее, несмотря на хаотичность траекторий отдельных молекул, общий поток движется в определенном направлении, и эту скорость можно характеризовать некоторой средней величиной.

Примером турбулентного течения является поток воды в горной реке. Если капнуть краситель в такой поток, то можно видеть, что в первоначальный момент времени появится струя, которая начнет испытывать искажения и небольшие завихрения, а затем исчезнет, перемешавшись во всем объеме жидкости.

От чего зависит режим течения жидкости?

Ламинарный или турбулентный режимы течения зависят от соотношения двух величин: вязкости текучей субстанции, определяющей трение между слоями жидкости, и инерционных сил, которые описывают скорость потока. Чем более вязкая субстанция, и чем меньше скорость ее течения, тем выше вероятность появления ламинарного потока. Наоборот, если вязкость жидкости мала, а скорость ее передвижения велика, то поток будет турбулентным.

Ниже приводится видео, которое наглядно поясняет особенности рассматриваемых режимов течения субстанции.

Как определить режим течения?

Для практики этот вопрос очень важен, поскольку ответ на него связан с особенностями движения объектов в текучей среде и величиной энергетических потерь.

Переход между ламинарным и турбулентным режимами течения жидкости можно оценить, если использовать так называемые числа Рейнольдса. Они являются безразмерной величиной и названы в честь фамилии ирландского инженера и физика Осборна Рейнольдса, который в конце XIX века предложил их использовать для практического определения режима движения текучей субстанции.

Рассчитать число Рейнольдса (ламинарное и турбулентное течение жидкости в трубе), можно по следующей формуле: Re = ρ*D*v/μ, где ρ и μ - плотность и вязкость субстанции, соответственно, v - средняя скорость ее течения, D - диаметр трубы. В формуле числитель отражает инерционные силы или поток, а знаменатель определяет силы трения или вязкость. Отсюда можно сделать вывод, что, если число Рейнольдса для рассматриваемой системы имеет большую величину, значит, жидкость течет в турбулентном режиме, и наоборот, маленькие числа Рейнольдса говорят о существовании ламинарного потока.

Конкретные значения чисел Рейнольдса и их использование

Как было сказано выше, можно использовать для определения ламинарного и турбулентного течения число Рейнольдса. Проблема состоит в том, что оно зависит от особенностей системы, например, если труба будет иметь неровности на своей внутренней поверхности, то турбулентное течение воды в ней начнется при меньших скоростях потока, чем в гладкой.

Статистические данные многих экспериментов показали, что независимо от системы и природы текучей субстанции, если число Рейнольдса меньше 2000, то имеет место ламинарное движение, если же оно больше 4000, то поток становится турбулентным. Промежуточные значения чисел (от 2000 до 4000) говорят о наличии переходного режима.

Указанные числа Рейнольдса используются для определения движения различных технических объектов и аппаратов в текучих средах, для исследования течения воды по трубам разной формы, а также играют важную роль при изучении некоторых биологических процессов, например, движение микроорганизмов в кровяных сосудах человека.

Хаотичное, неупорядоченное движение жидких частиц существенным образом влияет на характеристики турбулентных течений. Эти течения жидкости – неустановившиеся. Благодаря этому в каждой точке пространства скорости изменяются с течением времени. Мгновенное значение скорости можно выразить:

(2.42)

где – осредненная по времени скорость по направлению x , – пульсационная скорость по этому же направлению. Обычно осредненная скорость сохраняет во времени постоянное значение и направление, поэтому такое течение нужно принимать как среднеустановившееся. Когда рассматривается профиль скоростей турбулентного течения для какой-либо области, обычно рассматривают профиль осредненной скорости.

Рассмотрим поведение турбулентного потока жидкости около твердой стенки (рис. 2.17).

Рис. 2.17. Распределение скорости около твердой стенки

В ядре потока за счет пульсационных скоростей происходит непрерывное перемешивание жидкости. У твердых стенок поперечные движения частиц жидкости невозможны.

Около твердой стенки жидкость течет в ламинарном режиме.
Между ламинарным пограничным слоем и ядром потока существует переходная зона.

Движение жидкости при турбулентном режиме всегда сопровождается значительно большей затратой энергии, чем при ламинарном. При ламинарном режиме энергия расходуется на вязкое трение между слоями жидкости; при турбулентном же режиме, помимо этого, значительная часть энергии затрачивается на процесс перемешивания, вызывающий в жидкости дополнительные касательные напряжения.

Для определения напряжения сил трения в турбулентном потоке используется формула:

где – напряжение вязкого течения, – турбулентное напряжение, вызванное перемешиванием. Как известно, определяется законом вязкого трения Ньютона:

t в
(2.44)

Следуя полуэмпирической теории турбулентности Прандтля, принимая, что величина поперечных пульсаций скорости имеет в среднем один и тот же порядок, что и продольные пульсации, можно записать:

. (2.45)

Здесь r – плотность жидкости, l – длина пути перемешивания, – градиент осредненной скорости.

Величина l , характеризующая средний путь пробега частиц жидкости в поперечном направлении, обусловлена турбулентными пульсациями.
По гипотезе Прандтля, длина пути перемешивания l пропорциональна расстоянию частицы от стенки:

где c – универсальная постоянная Прандтля.

В турбулентном потоке в трубе толщина гидродинамического пограничного слоя растет значительно быстрее, чем для ламинарного.
Это приводит к уменьшению длины начального участка. В инженерной практике обычно принимают:

(2.47)

Поэтому довольно часто влиянием начального участка
на гидродинамические характеристики потока пренебрегают.

Рассмотрим распределение осредненной скорости по сечению трубы. Примем касательное напряжение в турбулентном потоке постоянным
и равным напряжению в стенке . Тогда после интегрирования уравнения (2.44) получим:

. (2.48)

Здесь – величина, имеющая размерность скорости, поэтому называется динамической скоростью.

Выражение (2.48) представляет собой логарифмический закон распределения осредненных скоростей для ядра турбулентного потока.

Путем несложных преобразований формулу (2.48) можно привести
к следующему безразмерному виду:

(2.49)

где – безразмерное расстояние от стенки; M – константа.

Как показывают опыты, c имеет одинаковое значение для всех случаев турбулентного течения . Значение M было определено опытами Никурадзе: . Итак, имеем:

(2.50)

В качестве безразмерного параметра, характеризующего толщину соответствующих зон, используется комплекс :

вязкий ламинарный подслой: ,

переходная зона: ,

турбулентное ядро: .

При турбулентом режиме отношение осредненной скорости
к максимальной осевой составляет от 0,75 до 0,9.

Зная закон распределения скоростей (рис. 2.18), можно найти величину гидравлических сопротивлений. Однако для определения гидравлических сопротивлений можно использовать более простое соотношение, а именно: критериальное уравнение движения вязкой жидкости, полученное ранее, в первой части дисциплины.

Рис. 2.18. Распределение скоростей в трубе

при ламинарном и турбулентном режимах

Для горизонтальной прямой трубы в случае напорного течения вязкой жидкости критериальное уравнение имеет вид:

(2.51)

где – геометрические комплексы, – критерий Рейнольдса, – критерий Эйлера. Они определяются как:

где ∆ – абсолютная шероховатость трубы, l – длина трубопровода,
d – внутренний диаметр трубы. Из опыта известно, что потери давления прямо пропорциональны . Поэтому можно записать:

(2.52)

Далее обозначим неизвестную функцию , распишем критерий Эйлера . Тогда из уравнения (2.52) для потери давления получим:

(2.53)

где l – коэффициент гидравлического трения, w – средняя скорость потока.

Полученное уравнение носит название уравнение Дарси – Вейсбаха. Уравнение (2.53) может быть представлено в виде потери напора:

(2.54)

Таким образом, расчет потери давления или напора сводится к определению коэффициента гидравлического трения l.

График Никурадзе

Среди многочисленных работ по исследованию зависимости выберем работу Никурадзе. Никурадзе подробно исследовал эту зависимость для труб с равномерно-зернистой поверхностью, созданной искусственно (рис. 2.19).

.

Рис. 2.19. График Никурадзе

Значение коэффициента определяется по эмпирическим формулам, полученным для различных областей сопротивления по кривым Никурадзе.

1. Для ламинарного режима течения, т.е. при , коэффициент l для всех труб независимо от их шероховатости определяется из точного решения задачи о ламинарном течении жидкости в прямой круглой трубе по формуле Пуазейля:

2. В узкой области наблюдается скачкообразный рост коэффициента сопротивления. Эта область перехода от ламинарного режима к турбулентному характеризуется неустойчивым характером течения. Здесь наиболее вероятен на практике турбулентный режим
и правильнее всего пользоваться формулами для зоны 3. Можно также применить эмпирическую формулу:

3. В области гидравлически гладких труб при толщина ламинарного слоя у стенки d больше абсолютной шероховатости стенок D, влияние выступов шероховатости, омываемых безотрывным потоком, практически не сказывается, и коэффициент сопротивления вычисляется здесь на основе обобщения опытных данных
по эмпирическим соотношениям, например по формуле Блаузиуса:

4. В диапазоне чисел Рейнольдса наблюдается переходная область от гидравлически гладких труб к шероховатым. В этой области (частично шероховатых труб), когда , т.е. выступы шероховатости с высотой, меньшей средней величины D, продолжают оставаться в пределах ламинарного слоя, а выступы с высотой, большей средней, оказываются в турбулентной области потока, проявляется тормозящее действие шероховатости. Коэффициент l в этом случае подсчитывается также из эмпирических соотношений, например
по формуле Альштуля:

(2.58)

5. При толщина ламинарного слоя у стенки d достигает своего минимального значения, т.е. и не меняется
с дальнейшим ростом числа Re. Поэтому l не зависит от числа Re,
а зависит лишь от e. В этой области (шероховатых труб или области квадратичного сопротивления) для нахождения коэффициента может быть рекомендована, например, формула Шифринсона:

(2.59)

В этой зоне значение l находится в пределах .

Были проведены исследования для определения l с естественной шероховатостью. Для этих труб вторая зона не определяется. Для расчета
l обычно предлагаются вышеуказанные формулы.


Top