Строение пластинчатой костной ткани. Хрящевая ткань- строение, виды, расположение в организме. Ретикулофиброзная костная ткань

Кости выполняют четыре основные функции:

  1. Они обеспечивают прочность конечностей и полостей тела, содержащих жизненно важные органы. При заболеваниях, ослабляющих или нарушающих структуру скелета, невозможно поддерживать прямую осанку, и возникают нарушения внутренних органов. Примером является сердечно-легочная недостаточность, развивающаяся у больных с выраженным кифозом из-за компрессионных переломов позвонков.
  2. Кости необходимы для движений, поскольку формируют эффективные рычаги и места прикрепления мышц. Деформация костей «портит» эти рычаги, что приводит к тяжелым нарушениям походки.
  3. Кости служат крупным резервуаром ионов, откуда организм черпает необходимые для жизни кальций, фосфор, магний и натрий при невозможности получения их из внешней среды.
  4. В костях содержится система кроветворения. Все больше данных свидетельствуют о трофических связях между стромальными клетками кости и элементами кроветворения.

Строение кости

Строение кости обеспечивает идеальное равновесие ее твердости и эластичности. Кость достаточно тверда, чтобы противостоять внешним воздействиям, хотя плохо минерализованная кость хрупка и подвержена переломам. В то же время кость должна быть достаточно легкой, чтобы смещаться при сокращениях мышц. Длинные трубчатые кости построены в основном из компактного вещества (плотно упакованных слоев минерализованного коллагена), придающего ткани твердость. Трабекулярные кости на поперечном срезе выглядят губчатыми, что придает им прочность и эластичность. Губчатое вещество составляет основную часть позвоночника. Заболевания, сопровождающиеся нарушением строения или уменьшением массы компактного вещества кости, приводят к переломам длинных костей, а те, при которых страдает губчатое вещество, - к переломам позвонков. Переломы длинных костей возможны и в случаях дефектов губчатого вещества.
Две трети веса костей приходится на минеральные вещества, а остальное - на воду и коллаген I типа. К неколлагеновым белкам костного матрикса относятся протеогликаны, белки, содержащие у-карбоксиглутамат, гликопротеин остеонектин, фосфопротеин остеопонтин и факторы роста. В костной ткани присутствует также небольшое количество липидов.

Минералы кости
Кость содержит минеральные вещества в двух формах. Основная форма - кристаллы гидроксиапатита различной зрелости. Остальные - аморфные соли фосфата кальция с меньшим, чем в чистом гидроксиапатите, отношением кальция к фосфату. Эти соли локализованы в участках активного формирования костной ткани и в большем количестве присутствуют в молодой кости.

Костные клетки
Кость состоит из клеток трех типов: остеобластов, остеоцитов и остеокластов.

Остеобласты
Остеобласты - основные костеобразующие клетки. Их предшественниками являются мезенхимальные клетки костного мозга, которые в процессе дифференцировки начинают экспрессировать рецепторы ПТГ и витамина D, щелочную фосфатазу (выделяемую во внеклеточную среду), а также белки костного матрикса (коллаген I типа, остеокальцин, остеопонтин и др.). Зрелые остеобласты перемещаются к поверхности кости, где выстилают участки новообразования костной ткани, располагаясь под костным матриксом (остеоидом) и вызывая его минерализацию - отложение кристаллов гидроксиапатита на слоях коллагена. В результате формируется пластинчатая костная ткань. Минерализация требует присутствия достаточного количества кальция и фосфата во внеклеточной жидкости, равно как и щелочной фосфатазы, которая секретируется активными остеобластами. Некоторые «стареющие» остеобласты уплощаются, превращаясь в неактивные клетки, выстилающие поверхность трабекул, другие - погружаются в компактное вещество кости, превращаясь в остеоциты, а третьи - подвергаются апоптозу.

{module директ4}


Остеоциты

Остеобласты, остающиеся в компактном веществе кости в ходе ее обновления, превращаются в остеоциты. Их способность к синтезу белка резко падает, но в клетках появляется множество отростков (канальцев), тянущихся за пределы полости резорбции (лакуны) и соединяющихся с капиллярами, отростками других остеоцитов данной костной единицы (остеона) и отростками поверхностных остеобластов. Считается, что остеоциты формируют синцитий, обеспечивающий перемещение минералов с костной поверхности, и, кроме того, играют роль сенсоров механической нагрузки, генерирующих основной сигнал к формированию и обновлению костной ткани.

Остеокласты
Остеокласты - гигантские многоядерные клетки, специализирующиеся на резорбции костной ткани. Они происходят от кроветворных клеток и больше не делятся. Образование остеокластов стимулируется остеобластами, которые своей поверхностной молекулой RANKL взаимодействуют с рецептором-активатором ядерного фактора каппа-В (RANK) на поверхности предшественников и зрелых остеокластов. Остеобласты выделяют также макрофагальный колониестимулирующий фактор-1 (М-КСФ-1), усиливающий действие RANKL на остеокластогенез. Кроме того, остеобласты и другие клетки продуцируют «ложный» рецептор остео-протегерин (ОПГ), который связывается с RANKL и блокирует его действие. ПТГ и 1,25(OH) 2 D (как и цитокины ИЛ-1, ИЛ-6 и ИЛ-11) стимулируют синтез RANKL в остеобластах. ФНО потенцирует стимулирующее действие RANKL на остеокластогенез, а ИФНγ блокирует этот процесс, действуя непосредственно на остеокласты.
Подвижные остеокласты окружают участок поверхности кости плотным кольцом, и прилегающая к кости их мембрана складывается в особую структуру, называемую гофрированной каемкой. Гофрированная каемка является отдельной органеллой, но действует как гигантская лизосома, которая растворяет и разрушает костный матрикс, секретируя кислоту и протеазы (преимущественно катепсин К). Пептиды коллагена, образующиеся в результате резорбции кости, содержат пиридинолиновые структуры, по уровню которых в моче можно судить об интенсивности костной резорбции. Таким образом, резорбция кости зависит от скорости созревания остеокластов и активности их зрелых форм. На зрелых остеокластах имеются рецепторы кальцитонина, но не ПТГ или витамина D.

Обновление кости

Обновление кости - это непрерывный процесс разрушения и образования костной ткани, продолжающийся всю жизнь. В детстве и подростковом возрасте обновление костей протекает с высокой скоростью, но количественно преобладает процесс костеобразования и увеличения костной массы. После того как костная масса достигает максимума, начинают преобладать процессы, определяющие динамику костной массы на протяжении остальной жизни. Обновление происходит на отдельных участках костной поверхности по всему скелету. В норме около 90% поверхности костей находится в покое, будучи покрытой тонким слоем клеток. В ответ на физические или биохимические сигналы клетки-предшественницы костного мозга мигрируют к определенным местам костной поверхности, где сливаются, образуя многоядерные остеокласты, которые «выедают» в кости полость.
Обновление компактного вещества кости начинается изнутри конической полости, продолжающейся в туннель. В этот туннель наползают остеобласты, формирующие цилиндр новой кости и постепенно сужающие туннель, пока не остается узкий гаверсов канал, через который питаются оставшиеся в виде остеоцитов клетки. Кость, образованная в одной конической полости, носит название остеона.
При резорбции губчатого вещества образуется зубчатый участок костной поверхности, называемый гаушиповой лакуной. Через 2-3 месяца фаза резорбции завершается, оставляя после себя полость глубиной около 60 мкм, в основание которой врастают предшественники остеобластов из стромы костного мозга. Эти клетки приобретают фенотип остеобластов, т. е. начинают секретировать такие костные белки, как щелочная фосфатаза, остеопонтин и остеокальцин, и постепенно замещают резорбированную кость новым костным матриксом. Когда новообразованный остеоид достигает толщины примерно в 20 мкм, начинается минерализация. Весь цикл обновления кости в норме продолжается около 6 месяцев.
Этот процесс не нуждается в гормональных влияниях, за тем лишь исключением, что 1,25(OH) 2 D поддерживает всасывание минеральных веществ в кишечнике и тем самым обеспечивает обновляющуюся кость кальцием и фосфором. Например, при гипопаратиреозе с костной тканью не происходит ничего, кроме замедления ее обмена. Однако системные гормоны используют кости как источник минеральных веществ для поддержания постоянства внеклеточного уровня кальция. Одновременно с этим происходит восполнение костной массы. Например, когда ПТГ активирует резорбцию кости (для коррекции гипокальциемии), усиливаются и процессы новообразования костной ткани, направленные на восполнение ее массы. Роль остеобластов в регуляции активности остеокластов изучена довольно подробно, но механизм «привлечения» остеобластов к очагам костной резорбции остается неясным. Одна из возможностей заключается в том, что при резорбции костей из костного матрикса высвобождается ИФР-1, который стимулирует пролиферацию и дифференцировку остеобластов.
Резорбированная кость восполняется не полностью, и по завершении каждого цикла обновления сохраняется некоторый дефицит костной массы. В течение жизни дефицит увеличивается, что определяет хорошо известный феномен возрастного уменьшения костной массы. Этот процесс начинается вскоре после прекращения роста тела. Различные воздействия (нарушения питания, гормоны и лекарственные вещества) влияют на костный обмен общим путем - через изменение скорости обновления костной ткани, но разными механизмами. Изменения гормональной среды (гипертиреоз, гиперпаратиреоз, гипервитаминоз D) обычно увеличивают число очагов обновления. Другие факторы (высокие дозы глюкокортикоидов или этанол) нарушают активность остеобластов. Эстрогены или недостаточность андрогенов увеличивают активность остеокластов. В любое данное время существует транзиторный дефицит костной массы, называемый «пространством обновления», т.е. еще незаполненный участок костной резорбции. В ответ на любой стимул, меняющий исходное количество участков обновления («единиц обновления»), пространство обновления либо увеличивается, либо уменьшается, пока не установится новое равновесие. Это проявляется увеличением или снижением костной массы.

  • механическая - кости, хрящи и мышцы образуют опорно-двигательный аппарат. Прочность костей является необходимым условием выполнения этой функции
  • защитная - кости образуют каркас для жизненно важных внутренних органов. Кроме того, кость сама является вместилищем для костного мозга, осуществляющего гемопоэтическую и иммунную функции
  • метаболическая - костная ткань является депо кальция и фосфора в организме и играет важную роль в поддержании постоянной концентрации этих элементов в крови
  1. плоские кости (кости черепа, лопатка, нижняя челюсть, подвздошная кость)
  2. трубчатые кости (длинные и короткие) (бедренная, плечевая, кости голени и предплечья)

    В длинных костях различают два широких конца (эпифизы), более или менее цилиндрическую среднюю часть (диафиз) и часть кости, где диафиз переходит в эпифиз (метафиз). Метафиз и эпифиз длинных костей разделены слоем хряща - эпифизарным хрящом (так называемые ростовые площадки).

  3. объемные кости (длинные, короткие, сесамовидные)
  4. смешанные кости

Строение кости

Структурной единицей кости является остеон или гаверсова система, т.е. система из 20 и более концентрически расположенных костных пластинок вокруг центрального канала, в котором проходят сосуды микроциркуляторного русла, безмиелиновые нервные волокна, лимфатические капилляры, сопровождаемые элементами рыхлой волокнистой соединительной ткани, содержащей остеогенные клетки, периваскулярные клетки, остеобласты и макрофаги. Остеоны не прилегают плотно друг к другу, между ними располагаются межклеточное вещество, вместе с которым остеоны образует основной средний слой костного вещества, покрытый изнутри эндостом. Эндост представляет собой динамическую структуру, образованную тонким соединительнотканным слоем, включающим выстилающие кость клетки, остеогенные клетки и остеокласты. В местах активного остеогенеза под слоем остеобластов находится тонкая прослойка неминерализованного матрикса - остеоида. Эндостом окружена полость, содержащая костный мозг.

Снаружи костное вещество покрыто периостом (надкостницей), состоящей из двух слоев: наружного - волокнистого и внутреннего, прилегающего к поверхности кости - остеогенного или камбиального, который является источником клеток при физиологической и репаративной регенерации костной ткани. Периост пронизан кровеносными сосудами, идущими из него в костное вещество в особых каналах, называемых фолькмановскими. Начало этих каналов видно на мацерированой кости в виде многочисленных сосудистых отверстий. Сосуды гаверсовых и фолькмановских каналов обеспечивают обмен веществ в кости.

Костная ткань может быть зрелой - пластинчатой и незрелой - ретикулофиброзной. Ретикулофиброзная костная ткань представлена, главным образом, в скелете плодов; у взрослых - в местах прикрепления сухожилий к костям, в зарастающих швах костей черепа, а также в костном регенерате при консолидации перелома.

Пластинчатая ткань формирует компактное или губчатое (трабекулярное) вещество кости. Из компактного вещества построены, например, диафизы трубчатых костей. Трабекулярное вещество формирует эпифизы трубчатых костей, заполняет плоские, смешанные и объемные кости. Пространства, окружающие эти трабекулы, заполнены костным мозгом, как и полости диафиза.

И компактное, и губчатое вещество имеют остеонное строение. Различие заключается в остеонной организации.

Морфологически в состав костной ткани входят клеточные элементы и межклеточное вещество (костный матрикс). Клеточные элементы занимают незначительный объем.

представлен остеобластами, остеоцитами и остеокластами.

Остеобласты представляют собой крупные клетки с базофильной цитоплазмой. Активные синтезирующие остеобласты - это кубические или цилиндрические клетки с тонкими отростками. Основной фермент остеобластов - щелочная фосфатаза (ЩФ). Активные остеобласты покрывают 2-8% поверхности кости, неактивные (покоящиеся клетки) - 80-92%, образуя сплошной клеточный слой около синуса костномозгового канала. Основная функция остеобластов - белковый синтез. Они образуют остеоидные пластинки путем отложения коллагеновых волокон и протеогликанов. Ежедневно откладывается 1-2 мкм остеоида (новообразованная некальцинированная костная ткань). Через 8-9 дней конечная толщина этого слоя достигает 12 мкм. После десятидневного созревания начинается минерализация с противоположной остеобласту стороны, фронт минерализации продвигается в направлении остеобласта. В конце цикла каждый десятый остеобласт замуровывается как остеоцит. Остальные остеобласты остаются на поверхности как неактивные. Они участвуют в обмене веществ в костной ткани.

Остеокласты - гигантские многоядерные клетки (4-20 ядер). Обычно они находятся в контакте с кальцифицированными костными поверхностями и в пределах гаушиповых лакун, являющихся результатом их собственной резорбтивной активности. Основной фермент - кислая фосфатаза. Остеокласты - подвижные клетки. Они окружают ту часть кости, которая должна резорбироваться. Продолжительность их жизни составляет от 2 до 20 дней. Основная функция остеокластов - рассасывание костной ткани за счет лизосомальных ферментов в области щеточной каемки.

Остеоциты - метаболические неактивные костные клетки. Они находятся в глубоко вмонтированных в кость малых остеоцитных лакунах. Остеоциты происходят из остеобластов, замурованных в собственном костном матриксе, который позже кальцифицируется. Эти клетки имеют многочисленные длинные отростки для того, чтобы контактировать с клеточными отростками других остеоцитов. Они образуют сеть тонких канальцев, распространяющихся на весь костный матрикс. Основная роль остеоцитов - внутриклеточный и внеклеточный транспорт питательных веществ и минералов.

состоит из органической (25%), неорганической (50%) частей и воды (25%).

Органическая часть

состоит из коллагена I типа, неколлагеновых белков и протеогликанов, которые синтезируются остеобластами и доставляются тканевой жидкостью.

Идентифицировано 19 типов коллагеновых белков (Кадурина Т.И., 2000). Изоформы коллагена различаются по аминокислотному составу, иммунологическим, хроматографическим свойствам, макромолекулярной организации и распределении в тканях. В морфофункциональном плане все изоформы подразделяют на интерстициальные коллагены (I, II, III, V типов), которые формируют крупные фибриллы; нефибриллярные (минорные) коллагены (IV, VI-XIX типов), образующие мелкие фибриллы и выстилающие базальные мембраны. Коллагены I и V типов называют перицеллюлярными. Они откладываются вокруг клеток, образуя опорные структуры. Для костной ткани наиболее характерен коллаген I типа.

Молекула коллагена состоит из трех альфа-цепей, обвитых одна вокруг другой и образующих правовращающую спираль. Альфа-цепи построены из часто повторяющихся фрагментов, имеющих характерную триплетную последовательность -Gly-X-Y. Положение Х часто занимает пролин (Pro) или 4-гидроксипролин (4Hyp), Y - гидроксилизин, а третье место всегда занимает глицин, благодаря чему обеспечивается плотная упаковка трех полипептидных цепей в фибриллу.

Концевые участки альфа-цепей на N- и С-концах молекулах - телопептиды (PINP и PICP соответственно). Расположение глицина здесь неупорядоченное, в результате чего в этой части молекулы нет плотно упакованной тройной спирали.

Телопептиды задействованы в механизме полимеризации молекул в фибриллы, формировании межмолекулярных поперечных связей, представляющих собой трехвалентные пиридинолины, которые освобождаются во время резорбции кости, и в проявлении антигенных свойств коллагена.

По уровню высвобождающихся PINP и PICP можно косвенно судить о способности остеобластов синтезировать коллаген I типа, поскольку из одной молекулы проколлагена образуется по одной молекуле коллагена и по одному N- и C- терминальному телопептиду. Для количественного определения PINP и PICP разработаны методы радиоиммунного и иммуноферментного анализа (Taubman M.B., Goldberg B., Sherr C., 1974; Pedersen B.J., Bonde M., 1994). Клиническое значение этих показателей дискутируется (Linkhart S.G., et al., 1993; Mellko J., et al., 1990; Mellko J., et al., 1996).

Образование коллагена включает два этапа.

  1. На первом происходит внутриклеточный синтез остеобластами предшественника коллагена - проколлагена. Синтезированная цепь проколлагена подвергается внутриклеточной посттрансляционной модификации с гидроксилированием пролина и лизина, и гликозилированием гидроксилизиновых остатков в структуре коллагена. Три цепи проколлагена формируют молекулу проколлагена. Сборка проколлагена происходит с образованием дисульфидных связей в С-концевых областях, после чего образуется структура из трех цепей, вместе закрученных в спираль. Такая молекула секретируется остеобластами во внеклеточное пространство.
  2. После секреции происходит сборка во внеклеточном пространстве тропоколлагена - мономера коллагена. При этом, под влиянием внеклеточной лизиноксидазы, образуются характерные для зрелого коллагена межфибриллярные сшивки - пиридинолиновые мостики, в результате чего формируются коллагеновые фибриллы.

Остальную органическую часть костного матрикса возможно классифицировать на:

  • неколлагеновые белки, осуществляющие адгезию клеток (фибронектин, тромбоспондин, остеопонтин, костный сиалопротеин). Эти же белки способны интенсивно связываться с кальцием и участвовать в минерализации костной ткани;
  • гликопротеины (щелочная фосфатаза, остеонектин);
  • протеогликаны (кислые полисахариды и гликозаминогликаны - хондроитинсульфат и гепарансульфат);
  • неколлагеновые гамма-карбоксилированные (Gla) протеины (остеокальцин, Gla-протеин матрикса (MGP));
  • факторы роста (фактор роста фибробластов, трансформирующие факторы роста, костные морфогенетические белки) - цитокины, выделяемые клетками костной ткани и крови, осуществляющие местную регуляцию остеогенеза.

Щелочная фосфатаза (ЩФ). Синтез данного белка считается одним из самых характерных свойств клеток остеобластической линии. Однако, следует учитывать, что данный фермент имеет несколько изоформ (костную, печеночную, кишечную, плацентарную). Точно механизм действия щелочной фосфатазы не установлен. Предполагается, что данный фермент отщепляет фосфатные группы от других протеинов, благодаря чему увеличивается локальная концентрация фосфора; также ему приписывают разрушение ингибитора минерализации - пирофосфата. Время полужизни в крови составляет 1-2 сут, выводится почками (Coleman J.E., 1992). Определение активности костной фракции ЩФ имеет большую специфичность, чем определение в крови активности общей ЩФ, поскольку повышение последней может быть связано с увеличением количества других изоферментов. Значительное увеличение количества костной ЩФ в сыворотке/плазме крови наблюдается при росте костей, болезни Педжета, гиперпаратиреозе, остеомалации и связано с высокой интенсивностью остеогенеза (Defton L.J., Wolfert R.L., Hill C.S., 1990; Moss D.W., 1992). Наиболее адекватными методами определения активности костной ЩФ считаются иммуноферментный анализ и хроматография (Hill C.S., Grafstein E., Rao S., Wolfert R.L., 1991; Gomez B.Jr., et al., 1995; Hata K., et al., 1996).

Остеонектин - гликопротеин кости и дентина, имеет высокое сродство к коллагену I типа и к гидроксиапатиту, содержит Са-связывающие домены. Поддерживает в присутствии коллагена концентрацию Са и Р. Предполагается, что белок участвует во взаимодействии клетки и матрикса.

Остеопонтин - фосфорилированный сиалопротеин. Его определение ИГХ методами может быть использовано для характеристики белкового состава матрикса, в частности поверхностей раздела, где он является главным компонентом и аккумулируется в виде плотного покрова, названного линиями цементации (lamina limitans). Благодаря своим физико-химическим свойствам регулирует кальцификацию матрикса, специфично участвует в адгезии клеток к матриксу или матрикса к матриксу. Продукция остеопонтина - одно из наиболее ранних проявлений активности остеобластов.

Остеокальцин - небольшой белок наиболее широко представлен в костном матриксе. Участвует в процессе кальцификации, служит маркером для оценки активности метаболизма костной ткани, составляя 15% экстрагируемых неколлагеновых белков. Состоит из 49 аминокислотных остатков, три из которых являются кальцийсвязывающими. Синтезируется и секретируется остеокальцин на остеобластах. Его синтез на уровне транскрипции контролирует кальцитриол (1,25 - дигидроксихолекальциферол), кроме того, в процессе "созревания" в остеобластах подвергается витамин К-зависимому карбоксилированию трех остатков глютаминовой кислоты. Сходный с остеокальцином белок - костный gla-протеин (BGP) содержит 5 остатков глютаминовой кислоты. Во внеклеточном матриксе карбоксилированные остатки карбоксиглутаминовой кислоты способны связывать ионизированный Ca 2+ и, таким образом, остеокальцин прочно связывается с гидроксиапатитом (Price P.A., Williamson M.K., Lothringer J.W., 1981). В связанном виде находятся 90% белка. 10% вновь синтезированного остеокальцина сразу диффундирует в кровь, где может быть обнаружен. Циркулирующий в периферической крови остеокальцин - чувствительный маркёр костного метаболизма, и его определение имеет диагностическое значение при остеопорозе, гиперпаратиреозе и остеодистрофии (Charhon S.A., et al., 1986; Edelson G.W., Kleevehoper M., 1998). При остеокластической резорбции остеокальцин костного матрикса высвобождается в кровь в виде полипептидных фрагментов. В результате в моче появляются метаболиты &ggamma;-карбоксиглутаминовой кислоты. Таким образом, повышение общего остеокальцина в сыворотке отражает активизацию остеогенеза.

Костные морфогенетические белки (КМБ) - цитокины, относящиеся к основному подклассу трансформирующих факторов роста. Известно, что они способны индуцировать рост костной ткани, а именно воздействовать на пролиферацию и дифференцировку четырех типов клеток - остеобластов, остеокластов, хондробластов и хондроцитов. Кроме этого, морфогенетические белки блокируют миогенез и адипогенез. Показано, что остеобласты и клетки стромы костного мозга экспрессируют рецепторы КМБ I и II типов. Обработка их КМБ в течении 4-х недель вызывает минерализацию матрикса, повышение активности щелочной фосфатазы и концентрации мРНК. Показано, что КМБ распределен по коллагеновым волокнам костной ткани, в клетках остеогенного слоя надкостницы; в умеренных количествах он имеется в клетках пластинчатой кости и в избытке присутствует в тканях зуба.

Протеогликаны - это класс макромолекул с молекулярной массой 70-80 кДа, состоящие из стержневого белка, с которыми ковалентно связаны цепи гликозоаминогликанов (ГАГ), последние состоят из повторяющихся дисахаридных субъединиц: хондроитина, дерматана, кератана, гепарана (рис. 9). ГАГ подразделяют на две группы - несульфатированные (гиалуроновая кислота, хондроитин) и сульфатированные (гепарансульфат, дерматансульфат, кератансульфат).

Неорганическая часть

В значительной части содержит кальций (35%) и фосфор (50%), образующие кристаллы гидроксиапатита и соединяющиеся с молекулами коллагена посредством неколлагеновых белков матрикса. Гидроксиапатит не единственная форма ассоциации кальция и фосфора в костной ткани. Кость содержит окта- , ди-, трикальций фосфаты, аморфный фосфат кальция. Кроме этого в состав неорганического матрикса входят бикарбонаты, цитраты, фториды, соли Mg, K, Na и др.

Костный матрикс образован коллагеновыми фибриллами ориентированными в одном направлении. Они составляют 90% всех белков кости. Веретенообразные и пластинчатые кристаллы гидроксиапатита находятся на коллагеновых волокнах, в их пределах и в окружающем пространстве. Как правило, они ориентированы в том же направлении, что и коллагеновые волокна. Основное вещество состоит из гликопротеинов и протеогликанов. Эти высокоионизированные комплексы обладают выраженной ионсвязывающей способностью и потому играют важную роль в кальцификации и фиксации кристаллов гидроксиапатита к коллагеновым волокнам. Костный коллаген представлен коллагеном 1 типа, а коллагены II, V, XI типов встречаются только в следовых количествах. Также в костном матриксе присутствуют многочисленные неколлагеновые протеины. Большинство из них синтезируется костеобразующими клетками. Их функция недостаточно ясна, однако установлено, что уровень этих белков уменьшается по мере созревания матрикса.

Кальций. Кальций поступает в организм с пищей. Потребление его составляет 0,9 (у женщин) - 1,1 (у мужчин) г/сут, а всасывание от 0,12 до 0,67 г/сут. Более 90% кальция в организме находится в костной ткани. Концентрация кальция в плазме составляет около 10 мг/100мл. Суточные колебания не превышают 3%. Около 40% ассоциированы с белком, и только половина - в ионизированной форме. Ионы кальция - ключевой регулятор клеточного метаболизма, поэтому уровень ионизированого кальция строго контролируется и рассматривается как физиологическая константа (Брикман А., 1999). Ежедневно 10 ммоль (0,4 г) кальция поступает в кости и столько же покидает скелет, так поддерживается стабильный уровень кальция в крови. Регуляция этого процесса осуществляется тремя органами - кишечником, почками, костями и тремя основными гормонами - паратиреоидным, кальцитриолом, кальцитонином.

Кальций пищи всасывается в тонкой кишке посредством двух независимых процессов. Первый - насыщаемый (чресклеточный) путь регулируется витамином D и происходит в основном в начальном отделе тонкой кишки (Heath D., Marx S.J., 1982). Второй процесс - ненасыщаемый - представляет собой пассивную диффузию кальция из просвета кишки в кровь и лимфу. Количество, всасываемое этим путем, линейно зависит от количества растворенного кальция в кишке. Этот процесс не подвержен прямой эндокринной регуляции. Совместное действие двух механизмов обеспечивает повышение эффективное всасывание кальция в периоды высокой физиологической потребности, при низком содержании кальция в продуктах. Кроме того, всасывание кальция зависит от возраста (Brazier M., 1995). В первые дни после рождения усваивается почти весь получаемый кальций, и в период роста усвоение кальция остается высоким. Заметное снижение всасывания кальция происходит после 60 лет. Количество доступного кальция зависит и от рациона, поскольку фосфаты, оксалаты, жиры связывают кальций. Нерастворимые соли с кальцием образует фитиновая кислота, большое количество которой содержится в пшеничной муке. Всасывание кальция повышают высококалорийная белковая диета, гормон роста. При тиреотоксикозе может наблюдаться отрицательный кальциевый баланс. Плохому всасыванию кальция способствуют острые и хронические заболевания почек, гастроэктомия, резекция больших сегментов тонкой кишки, заболевания кишечника.

Важнейшую роль в метаболизме этого катиона играют почки. 97-99% профильтрованного кальция реабсорбируется и с мочой выделяется не более 5 ммоль/сут (0,2 г/сут). На выделение кальция почками влияют также баланс натрия. Вливание хлорида натрия или повышенный прием натрия с пищей повышают выделение кальция с мочой (Nordin B.E.C., 1984).

Фосфор. Около 80% фосфора в организме человека связано с кальцием и образует неорганическую основу костей и служит резервуаром фосфора (Долгов В.В., Ермакова И.П., 1998). Внутриклеточный фосфор представлен макроэргическими соединениями, это - кислоторастворимый фосфор. Фосфор также является составной частью фосфолипидов - основных структурных компонентов мембран.

Суточное потребление фосфора 0,6-2,8 г (Москалев Ю.И., 1985). Обычно всасывается около 70% поступившего с пищей фосфора, и этот процесс зависит от содержания кальция в пищевых продуктах и образования нерастворимых солей. Фосфор и кальций образуют плохо растворимые соединения, поэтому их общая концентрация не превышает определенного уровня и повышение одного из них, как правило, сопровождается снижением другого (Pak C.Y.C., 1992). Высокое содержание в пище магния, железа и алюминия также снижает всасывание фосфора. Витамин D и липиды, наоборот, способствуют всасыванию фосфора.

В плазме неорганический фосфор содержится в виде анионов НРО4-2 и Н2РО4-, общее их количество 1-2 мМ. Около 95% - это свободные анионы, 5% связаны с белком.

При почечной недостаточности снижение клубочковой фильтрации на 20% относительно нормы вызывает гиперфосфатемия. Вследствие этого снижается синтез кальцитриола и всасывание кальция в кишечнике (Rowe P.S., 1994). Тканевой катаболизм является частой причиной гиперфосфатемии у больных с диабетическим кетоацидозом. Причины гипофосфатемии - дефицит витамина D, синдром мальабсорбции, первичный и вторичный гиперпаратиреоз, диабетический кетоацидоз (фаза восстановления), почечная тубулярная недостаточность, почечная тубулярная недостаточность, почечная тубулярная недостаточность, алкогольный делирий, алколоз, гипомагниемия. В норме канальцевая реабсорция равна 83-95%. Уменьшение канальцевой реабсорбции фосфата обусловлено повышением уровня ПТГ либо первичным дефектом реабсорбции фосфата в почечных канальцах.

Магний. Около половины всего магния организма содержится в костях. Показано, что комплекс Mg-АТФ необходим для функционирования Са-насоса, определяющего уровень импульсации клеток, обладающих свойством автоматии (Москалев Ю.И., 1985; Ryan M.F., 1991). В плазме магний распределен в трех фракциях: свободный (ионизированный) - примерно 70-80%; связанный (с альбумином и другими белками) - 20-30%; полностью связанный (комплексированный) - 1-2%. Физиологически активным является ионизированный магний. Повышение концентрации магния подавляет секрецию ПТГ (Brown E.M., Chen C.J., 1989).

Гипомагниемия - самая распространенная причина гипокальциемии (Mundy G.R., 1990). При восполнении магния уровень кальция быстро нормализуется. Дефицит магния может развиваться при наследственных дефицитах всасывания, при алкоголизме с недостаточным питанием, нарушений функции почек, лечении гентамицином, тобрамицином, амикацином, циклоспорином, неправильном парентеральном питании. При дефиците магния гипокальциемия развивается из-за снижения секреции ПТГ и развития резистентности костной ткани и почек к ПТГ (Ryan M.F., 1991). Экскреция магния с мочой повышается при избыточном объеме внеклеточной жидкости, гиперкальциемии, гипермагниемии и снижается в противоположных ситуациях.

Общий магний измеряется фотометрически, ионизированный - с помощью ион-селективных электродов. Значения ионизированного магния зависят от рН (Ryan M.F., 1991).

Рост костей

осуществляется в детском и юношеском возрастах. Рост в толщину происходит за счет функционирования периоста. При этом клетки внутреннего слоя пролиферируют, дифференцируются в остеобласты, синтезируют межклеточный матрикс, который постепенно минерализуется и замуровывает синтезировавшие его клетки. Поскольку клетки надкостницы активно делятся, такой процесс повторяется многократно. Рост, происходящий таким образом, называется аппозиционным.

Рост костей в длину происходит благодаря наличию в переходном между диафизом и эпифизом отделе метаэпифизарной хрящевой пластинки роста. В ней выделяют четыре зоны. Поверхностная, обращенная к эпифизу, носит название резервной зоны. Вслед за ней, образовавшиеся клетки формируют зону пролиферации, находящиеся здесь хондробласты и хондроциты непрерывно делятся. Вследствие гипоксических условий в глубоких слоях этой области, клетки испытывают кислородное голодание, гипертрофируются. Совокупность таких хондроцитов образует третью зону - зону гипертрофированных хондроцитов. Наконец метаболические нарушения приводят к гибели клеток. Погибшие хондроциты с минерализованным матриксом наблюдаются в зоне обызвествленного хряща. Со стороны диафиза сюда врастает большое количество сосудов. В условиях хорошей оксигенации остеогенные клетки, расположенные вблизи кровеносных сосудов, дифференцируются в остеобласты и формируют костные трабекулы. Поскольку такой процесс происходит с обоих концов органа, кость удлиняется пропорционально.

62004 1

Костная ткань представляет собой весьма совершенную специализированную разновидность тканей внутренней среды.

В этой системе гармонично сочетаются такие противоположные свойства, как механическая прочность и функциональная пластичность, процессы новообразования и разрушения.

Костная ткань состоит из клеток и межклеточного вещества, которые характеризуются определенной гистоархитектоникой. Основные клетки костной ткани - это остеобласты, остеоциты и остеокласты.

Остеобласты имеют овальную или кубическую форму. Крупное светлое ядро располагается не в центре, оно несколько смещено к периферии цитоплазмы. Часто в ядре обнаруживается несколько ядрышек, что свидетельствует о высокой синтетической активности клетки.

Электронно-микроскопические исследования показали, что значительная часть цитоплазмы остеобласта заполнена многочисленными рибосомами и полисомами, канальцами гранулярной эндоплазматической сети, комплексом Гольджи, митохондриями, а также особыми матриксными пузырьками. Остеобласты обладают пролиферативной активностью, являются продуцентами межклеточного вещества и играют основную роль в минерализации костного матрикса. Они синтезируют и секретируют такие химические соединения, как щелочная фосфатаза, коллагены, остеонектин, остеопонтин, остеокальцин, костные морфогенетические белки и др. В матриксных пузырьках остеобластов содержатся многочисленные ферменты, которые, выделяясь за пределы клетки, инициируют процессы минерализации кости.

Синтезируемый остеобластами органический матрикс костной ткани состоит преимущественно (90-95 %) из коллагена I типа, коллагенов III-V и других типов, а также из неколлагеновых белков (остеокальцин, остеопонтин, остеонектин, фосфопротеины, костные морфогенетические белки) и гликозаминогликановых субстанций. Белки неколлагеновой природы обладают свойствами регуляторов минерализации, остеоиндуктивных веществ, митогенных факторов, регуляторов скорости образования коллагеновых фибрилл. Тромбоспондин способствует адгезии остеобластов к поднадкостничному остеоиду кости человека. Остеокальцин считается потенциальным индикатором функции этих клеток.

Ультраструктура остеобластов свидетельствует о том, что их функциональная активность различна. Наряду с функционально активными остеобластами, обладающими высокой синтетической активностью, имеются неактивные клетки. Чаще всего они локализуются на периферии кости со стороны костномозгового канала и входят в состав надкостницы. Строение таких клеток отличается малым содержанием органелл в цитоплазме.

Остеоциты являются более дифференцированными клетками, чем остеобласты. Они имеют отростчатую форму.

Отростки остеоцитов располагаются в канальцах, пронизывающих минерализованный костный матрикс в различных направлениях. Уплощенные тела остеоцитов находятся в специальных полостях - лакунах - и со всех сторон окружены минерализованным костным матриксом. Значительную часть цитоплазмы остеоцита занимает овоидное ядро. Органеллы синтеза в цитоплазме развиты слабо: имеются немногочисленные полисомы, короткие канальцы эндоплазматической сети, единичные митохондрии. В связи с тем что канальцы соседних лакун анастомозируют друг с другом, отростки остеоцитов связаны между собой при помощи специализированных щелевых контактов. В небольшом пространстве вокруг тел и отростков остеоцитов циркулирует тканевая жидкость, содержащая определенную концентрацию Са 2+ и РО 4 3- , могут содержаться неминерализованные или частично минерализованные коллагеновые фибриллы.

Функция остеоцитов заключается в сохранении целостности костного матрикса за счет участия в регуляции минерализации костной ткани и обеспечения ответа на механические стимулы. В настоящее время накапливается все больше данных о том, что эти клетки принимают активное участие в метаболических процессах, протекающих в межклеточном веществе кости, в поддержании постоянства ионного баланса в организме. Функциональная активность остеоцитов в значительной мере зависит от стадии их жизненного цикла и действия гормональных и цитокиновых факторов.

Остеокласты - это крупные многоядерные клетки с резко оксифильной цитоплазмой. Они являются частью фагоцитарно-макрофагальной системы организма, производными моноцитов крови.

На периферии клетки определяется гофрированная щеточная каемка. В цитоплазме обнаруживается много рибосом и полисом, митохондрий, канальцев эндоплазматической сети, хорошо развит комплекс Гольджи. Отличительной особенностью ультраструктуры остеокластов является наличие большого количества лизосом, фагосом, вакуолей и везикул.

Остеокласты обладают способностью создавать локально у своей поверхности кислую среду в результате интенсивно идущих в этих клетках процессов гликолиза. Кислая среда в области непосредственного контакта цитоплазмы остеокластов и межклеточного вещества способствует растворению минеральных солей и создает оптимальные условия для действия протеолитических и ряда других ферментов лизосом. Цитохимическим маркером остеокластов служит активность изофермента кислой фосфатазы, который называется кислой нитрофенилфосфатазой. Функции остеокластов заключаются в резорбции (разрушении) костной ткани и участии в процессе ремодуляции костных структур в ходе эмбрионального и постнатального развития.

Межклеточное вещество костных тканей состоит из органического и неорганического компонентов. Органические соединения представлены коллагенами I, III, IV, V, IX, XIII типов (около 95 %), неколлагеновыми белками (костные морфогенетические белки, остеокальцин, остеопонтин, тромбоспондин, костный сиалопротеин и др.), гликозаминогликанами и протеогликанами. Неорганическая часть костного матрикса представлена кристаллами гидроксиапатита, содержащими в большом количестве ионы кальция и фосфора; в значительно меньшем количестве в его состав входят соли магния, калия, фториды, бикарбонаты.

Межклеточное вещество кости постоянно обновляется. Разрушение старого межклеточного вещества представляет собой достаточно сложный и еще не ясный во многих деталях процесс, в котором принимают участие все типы клеток костной ткани и ряд гуморальных факторов, но особенно заметную и важную роль играют остеокласты.

Типы костной ткани

В зависимости от микроскопического строения различают две основные разновидности костной ткани - ретикулофиброзную (грубоволокнистую) и пластинчатую.

Ретикулофиброзная костная ткань широко представлена в эмбриогенезе и раннем постнатальном гистогенезе костей скелета, а у взрослых встречается в местах прикрепления сухожилий к костям, по линии зарастания черепных швов, а также в области переломов.

Как в эмбриогенезе, так и при регенерации ретикулофиброзная костная ткань с течением времени всегда замещается пластинчатой. Характерным в строении ретикулофиброзной костной ткани является неупорядоченное, диффузное расположение костных клеток в межклеточном веществе. Мощные пучки коллагеновых волокон слабо минерализованы и идут в различных направлениях. Плотность расположения остеоцитов в ретикулофиброзной костной ткани более высокая, чем в пластинчатой, и они не имеют определенной ориентации по отношению к коллагеновым (оссеиновым) волокнам.

Пластинчатая костная ткань является основной тканью в составе практически всех костей человека. В этой разновидности костной ткани минерализованное межклеточное вещество образует особые костные пластинки толщиной 5-7 мкм.

Каждая костная пластинка представляет собой совокупность близко расположенных друг к другу параллельных коллагеновых волокон, пропитанных кристаллами гидроксиапатита. В соседних пластинках волокна располагаются под разными углами, что придает кости дополнительную прочность. Между костными пластинками в лакунах упорядоченно лежат костные клетки - остеоциты. Отростки остеоцитов по костным канальцам проникают в окружающие их пластинки, вступая в межклеточные контакты с другими костными клетками. Различают три системы костных пластинок: окружающие (генеральные, бывают наружными и внутренними), концентрические (входят в структуру остеона), вставочные (представляют собой остатки разрушающихся остеонов).

В составе кости различают компактное и губчатое вещество. Оба они образованы пластинчатой костной тканью. Особенности гистоархитектоники пластинчатой кости будут представлены далее при описании кости как органа.

Болезни суставов
В.И. Мазуров

Функция костной ткани прежде всего связана с осуществлением механических задач, причем, с одной стороны, костная ткань благодаря своей плотности является надежной опорой и защитой для мягких органов и тканей и, с другой стороны, она в силу своей внутренней организации обеспечивает смягчение толчков и сотрясений, то есть амортизацию. Кроме того, костная ткань активно участвует в минеральном обмене. В сухом веществе костной ткани находится около 60% минеральных веществ, главные из них кальций, фосфор, магний и др. находятся в кости в состоянии подвижного равновесия. Они энергично вымываются из кости в период беременности, у несушки во время яйцекладки, у дойных коров в период лактации. Чтобы этот процесс не перешел границ нормы, зоотехник должен уделять особое внимание минеральному питанию. Минеральные вещества кости участвуют в создании нормальной концентрации минеральных веществ, особенно кальция и фосфора, в крови, чем создается постоянство внутренней среды организма.

Наконец, костная ткань неразрывно связана и по развитию, и в процессе функционирования с костным мозгом, в котором или совершается кроветворение (красный костный мозг), или резервируется жир (желтый костный мозг). Сущность этой связи пока не выяснена.

Химически костная ткань состоит из органического и неорганического вещества. Главные органические соединения - это оссеин и оссеому-коид. Оссеин по химическому составу близок к коллагену и также при разваривании дает клей. За счет оссеина построены волокна кости. Оссеомукоид склеивает волокна. Кроме того, имеются эластин, мукопротеид и гликоген. Неорганические вещества главным образом находятся в форме апатита Са10(РО4)6 СО3. Особенно много в кости кальция (21-25%) и фосфора $-13%), меньше магния (1%), угольной кислоты (5%) и других элементов. Минеральное вещество кости на электронных микрофотографиях имеет вид игольчатых или пластинчатых частиц, длина которых достигает 1500 А при толщине 15-75 А. Размеры кристаллов с возрастом увеличиваются. Соотношение органических и неорганических соединений в костях с возрастом животного изменяется в сторону увеличения количества неорганических веществ. Поэтому кости старых животных становятся ломкими. Если в корме молодых животных мало витамина D или минеральных веществ, животные заболевают рахитом. При рахите нарушается отложение солей в промежуточном веществе кости, и они начинают гнуться под тяжестью своего собственного тел а. Соотношение органического и неорганического комплекса определяется также положением кости в скелете. Так, в дистальнее расположенных

Костях конечностей компактный слой кости менее минерализован, чем в проксимальных.

Классификация и строение. Известны грубоволокнистая и пластинчатая костная ткани,которые образуют скелет, а также дентин, составляющий основу зубов. Общим для разновидностей скелетной ткани является то, что они, подобно всем опорно-трофическим тканям, состоят из клеток и промежуточного вещества, причем в состав последнего в большом количестве входят минеральные вещества. Клеточные формы костной ткани - остеобласты, остеоциты и остеокласты.

Остеобласты - молодые костные клетки, развиваются из мезенхимы. Они крупные, с эксцентрично расположенным сочным ядром. Форма их в основном цилиндрическая. Остеобласты имеют короткие отростки, которыми они соприкасаются с соседними клетками.

В их цитоплазме сильно развиты цитоплазматическая сеть, пластинчатый комплекс и митохондрии. Это свидетельствует о высокой синтетической активности остеобластов. Считают, что они дают материал для промежуточного вещества кости. Электронная микроскопия подтвердила это предположение, В остеобластах содержится большое количество щелочной фосфатазы, принимающей участие в процессе минерализации.

Остеоциты встречаются в уже сложившейся кости и развиваются из остеобластов. У них сравнительно ьебольшое тело и многочисленные длинные отростки. Ядро небольшое, плотное; цитоплазматическая сеть, пластинчатый комплекс и митохондрии развиты слабо. Это связано с тем, что остеоциты не способны давать промежуточное вещество. Не наблюдается в них и митозов.

Остеокласты - крупные многоядерные клетки, скорее, представляющие собой симпласт (цитоплазма с многочисленными ядрами). Их размеры достигают 80 и более микрон. Форма клетки весьма разнообразная, что связано с ее активным движением. На теле клеток, со стороны резорбирующейся кости, имеются многочисленные отростки (выросты). Цитоплазма плохо окрашивается, слегка базофильна. В цитоплазме содержатся многочисленные вакуоли, являющиеся, по мнению ряда авторов, лизосомами, лизирующими межклеточное вещество в период перестройки кости.

Промежуточное вещество костной ткани, как и у других опорно-трофических тканей, состоит из аморфного вещества и волокон. Главную массу последних составляют оссеиновые волокна, близкие к коллагеновым. Встречается в кости и небольшое количество эластических волокон.

Грубоволокнистая костная ткань образует скелет у низших позвоночных - рыб и амфибий. У млекопитающих она существует лишь на ранних стадиях внутриутробной жизни, а у взрослого животного - в местах прикрепления сухожилий мышц и связок. В закончившей свое развитие грубоволокнистой кости различают клетки (остеоциты) и элементы промежуточного вещества (аморфное вещество), а также беспорядочно расположенные оссеиновые и небольшое количество эластических волокон. Оссеиновые волокна имеют значительную толщину, так как в их состав входит большое количество фибрилл.

Пластинчатая костная ткань характерна для более высокоорганизованных наземных животных. У млекопитающих из пластинчатой костной ткани состоят все кости скелета. От грубоволокнистой кости пластинчатая кость отличается тем, что клетки, аморфное вещество и особенно оссеиновые волокна расположены в ней упорядоченно, причем последние образуют пластинки. Пластинки вместе с клетками в пластинчатой кости формируют следующие системы: остеоны, вставочные пластинки, генеральные плас

Тинки; у свиней и жвачных хорошо развиты также системы циркуляр непараллельных пластинок.

Строение остеона (рис. 57-А). Более или менее в центре остеона имеется канал остеона. В нем помещается один или два кровеносных сосуда с окружающей их малодифференцированной тканью.

Рис. 57. Общий вид остеона (А) и

Схема последовательной смены трех

Генераций остеонов (Б):

1 - кровеносный сосуд в канале остеона; 2, 2а, 26 - костные пластинки, имеющие вид цилиндров, срезаны на разных уровнях; 2в, 2г - то же, но обе пластинки срезаны на одном уровне; 3 - костные клетки с отростками, замурованные в промежуточном веществе; 4 - направление оссеиновых волокон костных пластинок; 5, 6, 7 - остеоны первой, второй и третьей генерации; 8 - вставочные пластинки.

Стенка каналов состоит из остеоцитов и промежуточного вещества. Последнее формирует, как уже сказано, костные пластинки в виде цилиндров, которые как бы вложены один в другой. Число их в зависимости от размера остеона колеблется от нескольких единиц до нескольких десятков. Каждая пластинка состоит из склеенных небольшим количеством аморфного вещества параллельно расположенных и тесно прилегающих друг к другу оссеиновых волокон с отлагающимися на них кристаллами оксиапатита. Если в пределах одной пластинки волокна лежат строго параллельно, то с оссеиновыми волокнами смежных пластинок они образуют угол около 90°. Это напоминает принцип," положенный в основу строения фанеры. Часть оссеиновых волокон переходит из одной пластины в другую, чем обусловливается их плотность. Благодаря этому остеоны обеспечивают прочность костной ткани. Поэтому в местах, подверженных ударной нагрузке, в ткани больше остеонов. Между пластинками находится небольшой слой аморфного вещества, в котором лежат тела остеоцитов, тогда как их отростки пронизывают прилегающие к ним костные пластинки. Промежуточное вещество вокруг тела и отростков клеток несколько изменено и обозначается как капсула клеток. От окружающих структур остеоны отграничены более развитым слоем аморфного вещества, формирующего спайные линии. Остеоны ветвятся, анастомозиру-ют друг с другом, образуя сложную сеть в компактном веществе костей. Они имеют разный размер и округлую форму поперечного сечения.

Вставочные пластинки расположены между остеонами и по происхождению являются остатками стенки ранее существовавших остеонов (рис. 57, 58). Поэтому они тоже состоят из пластинок и расположенных между ними тел остеоцитов, отростки которых пронизывают ряд костных пластинок. Однако вставочные пластинки отличаются от остеона тем, что их костные пластинки не образуют полного цилиндра, а являются лишь его фрагментами. Кроме того, вставочные пластинки сильнее минерализованы, более тверды и не содержат кровеносных сосудов. Они придают жесткость костной ткани, и поэтому их больше в середине диафиза, особенно длинных трубчатых костей крупных животных.

Генеральные пластинки опоясывают компактное вещество кости снаружи (наружные генеральные пластинки) и со стороны мозговой

Риc 58. Участок пластинчатой костной ткани на поперечном разрезе:

/ - остеон; 1 - кровеносный сосуд в канале остеона; 2--костные пластинки остеона; 3 - остеоны с отростками; II - вставочные пластинки; 4 - костные пластинки вставочной и генеральной пластинки; III- внутренняя генеральная пластинка; 5 - питательный канал, щхяшзывающяй ее.

Рис. 59. Схематическое изображение компактного вещества, вырезанного из диафиза трубчатой кости:

/ - остеоны; 2 - вставочные пластинки; 3 - наружные и 4 - внутренние генеральные пластинки; 5 - каналы остеонов в продольном разрезе; 6 - питательный какал; 7 - костномозговая полость; 8 - надкостница; 9 - кровеносные сосуды; 10 - губчатое вещество; 11 - компактное вещество.

Полости трубчатых костей (внутренние генеральные пластинки) (рис. 58, 59). Они также состоят из костных пластинок, чередующихся с рядами тел остеоцитов. Но эти пластинки охватывают если не целиком, то большую часть поверхности всей кости снаружи или изнутри. Генеральные пластинки пронизаны питательными каналами (рис. 58- 5), которые не имеют собственной стенки.

В них из надкостницы проходят сосуды, сообщающиеся с сосудами каналов остеонов.

Циркуляряо - параллельные структуры напоминают генеральные пластинки, они отделены друг от друга циркулярными каналами и пронизаны системой более или менее коротких радиальных каналов. Это наиболее минерализованные и твердые образования. Чаще всего они располагаются в наружных слоях компактного вещества трубчатых костей. Иногда в массе этих структур имеются плохо выраженные остеоны.

Развивается костная ткань из мезенхимы. Мезенхимные клетки, претерпевая ряд превращений, становятся остеобластами.

Они вырабатывают материал, формирующий промежуточное вещество, в частности оссеиновые волокна кости. В организме млекопитающих вначале образуется грубоволокнистая костная ткань, на более поздних стадиях онтогенеза она заменяется пластинчатой, причем формируются остеоны, а после частичного разрушения их при перестройке кости образуются вставочные пластинки*

При развитии остеона остеобласты выделяют промежуточное вещество, главным образом сторону кровеносного сосуда. Вследствие этого вокруг сосуда и формируется цилиндрической формы костная пластинка из тесно расположенных друг около друга оссеиновых волокон. Новый слой остеобластов образует вторую костную пластинку, и его главной составной части - - оссеомукоида в костных пластинках мало. К наружной поверхности костной пластинки прилегает образованный теми же остеобластами слой промежуточного вещества, который богаче оссеомукоидом, но беднее волокнами и называется спайной линией. В ней замуровываются остеобласты, постепенно утрачивающие способность давать промежуточное вещество и превращающиеся в остеоциты. В костях различных животных и в разных костях одного животного размер, количество остеонов и число костных пластинок в них колеблются. А. А. Малигонов и Беднягин установили, что у коров симментальской породы кости на единицу площади среза имеют большее число, хотя и более мелких, остеонов, чем кости кубанского скота. Авторы связывают это отличие с большей скороспелостью симментальского скота. Рядом исследований установлено, что чем больше в кости остеонов, тем она лучше нротивостоит нагрузке. Наши исследования показали, что у копытных число остеонов в проксимальных звеньях конечностей минимально, тогда как в дистальных (нижних) звеньях количество их возрастает. Форма поперечного сечения остеонов различных костей несколько отлична, но в общем она более или менее округлая,

Образование и строение вставочных пластинок. Раз образовавшиеся первичные остеоны не остаются неизменными в течение всей жизни животного. Микроструктура кости изменяется в зависимости от условий функционирования, например от нагрузки. При этом старые остеоны разрушаются-, и из мезенхимы строятся новые остеоны, размер, форма и расположение которых оказываются иными. Разрушение старых остеонов совершается благодаря деятельности другой, крайне характерной для кости клеточной формы- остеокласта. Они разрушают остеоны, но лишь частично, в результате появляется полость (лакуна). Вслед за этим из недифференцированной ткани образуются остеобласты, располагающиеся по стенкам этой полости. Благодаря их деятельности возникает первая (считая с периферии) костная пластинка, а за счет деятельности новых генераций остеобластов образуются последующие пластинки остеона, располагающиеся все ближе и ближе к его центру. Вновь возникший таким образом остеон оказывается примыкающим к остаткам прежнего остеона, Эти остатки и являются вставочными системами. Из пути их возникновения ясно, что они построены так же, как и стенка остеона,

Сформированная костная ткань является самой прочной, она усту-нает лишь эмали зубов.

Развитие трубчатой кости. Выше описан процесс развития костной ткани, которая всегда развивается из мезенхимы. Из костной и других тканей строится орган, который называется костью. В процессе развития кости как органа имеются свои закономерности. Особенно хорошо они изучены для трубчатых костей скелета. Большинство костей скелета млекопитающих при своем развитии проходит три стадии: соединительнотканную, хрящевую и костную. Только покровные кости черепа и ключица развиваются на месте соединительной ткани, минуя хрящевую стадию. Развитие хряща на месте соединительнотканного зачатка совершается за счет мезенхимнои ткани. Развитие кости на месте хряща также происходит аа счет мезенхимы. Однако хрящевая ткань оказывает существенное влияние на остеогенез. При развитии кости на месте хряща вначале образуется грубоволокнистая кость, позже замещающаяся пластинчатой. На стадии хрящевого зачатка форма бу

Дущей кости обрисовывается уже достаточно отчетливо. Хрящевой зачаток со всех сторон покрыт надхрящницей, в которой имеются камбиальные клеточные элементы и проходят кровеносные сосуды и нервы. За счет недифференцированных клеточных элементов надхрящницы осуществляется рост хряща.

Рис. 60. Кость, развивающаяся на месте хряща:

/ - надкостница; 2 - пери-хондральная манжетка; 3 - поры в ней, занятые врастающей мезенхимой; 4 - мезенхима, заполняющая полость, которая образуется после разрушения хряща; 5 - зона обызвествления и разрушения хряща; 6 - зона «монетных столбиков»; 7 - неизмененный хрящ; 8 - энхондральная кость.

Процесс окостенения начинается в средней части диафиза. В этом месте со стороны надхрящницы обособляется слой клеток, превращающихся в остеобласты, которые строят грубоволокнистую кость. В результате вокруг средней части диафиза образуется костная манжетка из грубоволок-нистой кости. Так как манжетка развивается путем наслоения с периферии, то кость получила название перихондральной (рис. 60). После образования костной манжетки в хряще бурно развиваются процессы перестройки и в его клетках концентрируется большое количество гликогена. Основное вещество хряща разрушается и служит, вероятно, источником фосфата, который позже, при обызвествлении, вместе с кальцием образует апатит костной ткани. Через поры манжетки в хрящ врастают кровеносные сосуды и мезенхима. Сюда же поступают полисахариды, освобождающиеся из хрящевых клеток. Есть основание предполагать, что это один из факторов, вызывающих превращение мезенхимы в остеогенную ткань. При этом часть клеток мезенхимы превращается в два типичных для костной ткани вида клеток: остеобласты (кос-теобразователи) и остеокласты (костеразрушители). Остеокласты разрушают обызвествленный хрящ, и на его месте образуется первичная костная полость. Она заполняется мезенхимой, остеобластами, обломками хряща и кровеносными сосудами. Остеобласты оседают вокруг обломков

Хряща и начинают строить кость. В соответствии с формой обломков хряща образующаяся кость имеет характер губки. Губчатое вещество кости вначале заполняет всю среднюю часть (диафиз) зачатка кости.

В отличие от манжетки, которая наслаивалась снаружи, эта кость развивается изнутри-энхондральная кость. Внутри каждой перекладины энхон-дральной кости остаются участки хряща. Перихондральная костная манжетка в середине диафиза будущей кости утолщается и разрастается по направлению к обоим концам (эпифизам) будущей кости. По мере того как она покрывает хрящевой зачаток, все большая и большая часть хряща замещается губчатой костью. В результате количество энхондральной губчатой кости увеличивается. Ближе к эпифизам, в том месте, где манжетка тонка, еще происходит усиленный рост хряща в длину, а в толщину он уже не растет. Таких зон усиленного роста хряща две: вверху и внизу. Каждая из этих зон граничит с одной стороны с хрящом эпифиза, а с другой стороны - с энхондральной костью диафиза.

В силу того что в этих зонах хрящ растет только в направлении длинной оси зачатка, хрящевые клетки расходятся друг от друга только в продоль-

Ном направлении, располагаясь правильными рядами в виде «монетных столбиков». Зона монетных столбиков со стороны диафиаа постепенно разрушается, причем хрящевые клетки набухают и вакуолизируются, а промежуточное вещество его обызвествляется. Этот измененный хрящ со стороны диафиза разрушается остеокластами, и на месте разрушенных участков создается энхондральная кость. Гистохимическим и электронно-микроскопическим методами удалось показать, что некоторые вещества разрушающегося хряща используются при построении энхондральной кости. Таким образом, предсуществование и разрушение хряща есть условие развития кости. Со стороны проксимального и дистального эпифизов слой монетных столбиков непрерывно нарастает, поэтому весь зачаток кости растет в длину. В дальнейшем со стороны надкостницы на костную манжетку сверху накладывается новый слой перихондральной кости, которая в отличие от энхондральной костной манжетки является не пористой, а сплошной. Это компактное вещество.

В губчатом веществе диафиза на определенной стадии начинаются кос-теразрушительные процессы, в результате чего в центре диафиза кости появляется обширная полость. Губчатого энхондрального вещества в диафизе остается очень небольшое количество, только по его стенкам. Костная полость заполняется мезенхимой, образующей костный мозг. Позже процессы окостенения начинаются в эпифизах, где вначале образуется энхондральная, а затем перихондральная кости. Между окостеневшими эпифизом и диафизом долго после рождения животного остаются прослойки хряща, которые называют эпифизарным хрящом. За его счет кость продолжает расти в длину; в толщину она увеличивается за счет камбиальных элементов надкостницы. Когда эпифизарные хрящи окончательно заместятся костью, прекращается рост костей в длину и линейный рост животного. Перихондральная и энхондральная кости вначале построены из грубоволокнистой костной ткани, в дальнейшем она замещается пластинчатой.

Таким образом, в сформировавшейся кости различают надкостницу и компактное вещество, которое на местах сочленения с другими костями покрыто суставным хрящом, губчатое вещество и костную полость, заполненную костным мозгом. Надкостница покрывает всю кость, кроме суставных поверхностей. Через сосуды надкостницы кость получает питательные вещества и кислород. Нервы, расположенные в надкостнице, связывают кость с центральной нервной системой, а через нее - со всем организмом. Наконец, наличие малодифференцированных клеточных элементов в надкостнице обеспечивает возможность восстановления кости при повреждениях. Компактное вещество построено из пластинчатой кости. Наиболее сильно оно развито в средней части диафиза, уменьшаясь к эпифизам. Перекладины губчатого вещества также построены из пластинчатой кости. Губчатое вещество наиболее сильно развито в эпифизах и очень незначительно в диафи-.зе. Объемистая костная полость в центре диафиза у взрослых животных заполнена желтым костным мозгом, являющимся результатом жирового перерождения красного костного мозга. В петлях губчатого вещества, главным образом эпифизов, расположен красный костный мозг, который выполняет роль органа кроветворения. В нем развиваются эритроциты, зернистые формы лейкоцитов и кровяные пластинки.

Костный скелет выполняет три важнейшие функции: механическую, защитную и метаболическую (обменную).

Механическая функция .

Кости, хрящи и мышцы образуют опорно-двигательный аппарат, бесперебойная работа которого во многом зависит от прочности костей.

Защитная функция. Кости образуют каркас для жизненно важных органов (грудная клетка, череп, тазовые кости, позвоночник). также являются вместилищем для костного мозга, играющего важнейшую роль в развитии клеток крови и иммунной системы.

Метаболическая функция. Костная ткань выступает как депо кальция, фосфора и принимает участие в минеральном обмене веществ в организме, что обусловлено ее высокой лабильностью.

Выделяют губчатую и компактную костные ткани, которые имеют сходный состав и структуру матрикса, но различаются плотностью.

Компактная костная ткань составляет 80 % зрелого скелета, окружает костный мозг и области губчатой кости.

Губчатая костная ткань по сравнению с компактной имеет примерно в 20 раз большую поверхность на единицу объема.

Компактная кость и костные трабекулы образуют каркас для костного мозга.

Костная ткань представляет собой динамическую систему , в которой на протяжении всей жизни человека протекают процессы разрушения старой кости и образования новой, что составляет цикл ремоделирования костной ткани.

Это цепь последовательных процессов, благодаря которым кость растет и обновляется.

В детском и подростковом возрасте кости подвергаются активному ремоделированию, при этом костное образование преобладает над костным разрушением (резорбцией).

Кости состоят из двух основных частей: органической и неорганической. Органической основой кости являются клетки нескольких классов. Остеобласты представляют группу клеток-строителей, остеокласты разрушают костную ткань, удаляя лишнее. Основной структурной единицей кости являются остеоциты, синтезирующие коллаген.

Клетки костной ткани - остеобласты, остеоциты и остеокласты - в кости составляют 2%.

Остеоциты - высокодифференцированные клетки, происходящие из остеобластов, окруженные минерализованным костным матриксом и располагающиеся в остеоцитарных лакунах, заполненных коллагеновыми фибриллами. В зрелом скелете человека остеоциты составляют 90 % всех остеогенных клеток.

Биосинтетическая активность остеобластов и остеоцитов, а в связи с этим и организация межклеточного вещества, зависит от величины и направленности вектора нагрузки, характера и величины гормональных влияний и факторов местного окружения клетки. Поэтому костная ткань - это лабильная и постоянно меняющаяся структура.

Одним из наиболее интенсивных способов резорбции костной ткани является остеокластическая резорбция , осуществляемая остеокластами. Они имеют внескелетное происхождение из предшественников моноцитов макрофагов.

Матрикс костной ткани занимает 90 % от объема, остальная часть приходится на клетки, кровеносные и лимфатические сосуды. В межклеточном веществе костной ткани содержание воды низкое.

Костный матрикс состоит из органического и минерального компонентов. Неорганические компоненты составляют около 60% веса кости, органические - 30%; надолго клеток и воды приходится около 10%.

Суммарно в составе компактной кости минеральный матрикс по весу и в процентном отношении несколько меньше органического.

В костной ткани содержится более 30 микроэлементов: магний, медь, цинк, стронций, барий и другие, принимающие активное участие в метаболических процессах в организме.

Кости являются крупнейшим банком минералов в организме . В них сосредоточено 99% кальция, 85% фосфора и 60 % магния. Минералы постоянно расходуются на нужды организма, и, следовательно, существует необходимость восполнять их.

В определенные периоды жизни (беременность, кормление грудью, половое созревание у детей, климакс у женщин, стрессовые ситуации, при ряде заболеваний кишечника и эндокринной системы, когда нарушена всасываемость кальция и витамина при травмах) возникает повышенная потребность в кальции.

Особенно быстро кальций расходуется при гормональной перестройке организма женщины (беременность, менопауза). Для будущих матерей очень важно позаботиться о достаточном содержании кальция в пище, ибо от этого зависит правильное формирование и развитие скелета у ребенка и отсутствие в дальнейшем кариеса.

Восполнение кальция необходимо для нормального функционирования органов и систем, а также для профилактики ряда заболеваний, в том числе остеопороза.

В норме баланс между синтезом и резорбцией костной ткани меняется очень медленно. Но он подвергается множеству влияний со стороны как эндокринной системы (гормоны яичников, щитовидной и паращитовидной желез, надпочечников), так и окружающей среды и многих других факторов.

И малейший сбой в системах регуляции и обмена веществ ведет к нарушению равновесия между клетками-строителями и клетками-разрушителями, снижению уровня кальция в костях.

Большинство людей достигает максимальной костной массы между 25 и 35 годами. Это значит что в это время кости обладают наибольшей плотностью и крепостью.

К сожалению, в дальнейшем эти свойства постепенно теряются, что может привести к развитию остеопороза и впоследствии к неожиданным переломам.


Состояние костной ткани:

А — в норме;

Б — при

Моделирование и ремоделирование костной ткани обеспечивается сложным комплексом факторов. К ним относят системные факторы, среди которых можно выделить две группы гормонов:

  • кальцийрегулирующие гормоны (паратиреоидный гормон, кальцитриол - активный метаболит витамина 03, кальцитонин);
  • другие системные гормоны (глюкокортикоиды, половые гормоны, тироксин, соматотропный гормон, инсулин и др.).

Участвуют в регуляции костной перестройки ростовые факторы, объединенные в большую группу, - инсулиноподобные факторы роста (ИФР-1, ИФР-2), фактор роста фибробластов, трансформирующий фактор роста (ТФР-р), фактор роста тромбоцитарного происхождения и др.

Важную роль в регуляции костного метаболизма и минерального обмена играют и другие факторы микроокружения, продуцируемые самими клетками, - простагландины, морфогенетические белки, остеокластактивирующий фактор и др.

Среди гормонов наиболее существенное влияние на метаболизм костной ткани и гомеостаз кальция оказывают паратгормон, витамин D и его метаболиты и в меньшей степени - кальцитонин. У женщин на регуляцию метаболизма костной ткани влияют эстрогены.

То или иное участие в регуляции ремоделирования кости принимают почти все другие гормоны, продуцируемые железами организма.


Top