Принцип действия металлоискателя. Принцип работы металлоискателя

1.1. Принципы работы

Металлоискатель по принципу "передача-прием"

Термины "передача-прием" и "отраженный сигнал" в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о ме-таллоискателях. В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый (излучаемый), так и принимаемый (отраженный) сигналы являются непрерывными, они существуют одновременно и совпадают по частоте.

Принцип действия металлоискателей типа "передача-прием" заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. , стр. 225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки ме-таллоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая, приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной электродвижущей силы (э.д.с.) в приемной катушке.

Поначалу может показаться, что в природе существуют всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис. 1, а и б) - катушки с перпендикулярными и со скрещивающимися осями.

Рис. 1. Варианты взаимного расположения катушек датчика металлоискателя по принципу "передача-прием"

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискате-лей может быть сколь угодно много. Но это - более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис. 1, в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того, такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа "блина" или "летающей тарелки".

Основные варианты взаимного расположения компланарных катушек приведены на рис. 2, а и б. В схеме на рис. 2, а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис. 2, б одна из катушек (приемная) скручена в виде "восьмерки", так что суммарная э.д.с, наводимая на половинки витков приемной катушки, расположенные в одном крыле "восьмерки", компенсирует аналогичную суммарную э.д.с, наводимую в другом крыле "восьмерки". Возможны и другие разнообразные конструкции датчиков с компланарными катушками, например рис. 2, е.

Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу "передача-прием"

Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

Металлоискатель на биениях

Название "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты. Такая схемотехника долгое время была традиционной, однако в настоящее время она уже не используется ни в радиотехнике, ни в металлоискателях. И там, и там - на смену амплитудным детекторам пришли синхронные детекторы, но термин "на биениях" остался до сих пор.

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и, как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило, очень мало, однако изменение разности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты. Чувствительность металлоискателя на биениях зависит, кроме всего прочего, от параметров преобразования изменения полного сопротивления датчика в частоту.

Обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10 Гц. Визуально, по миганию светодио-да, можно зарегистрировать уход частоты не менее 1 Гц. Другими способами можно добиться регистрации и меньшей разности частот, однако, эта регистрация потребует значительного времени, что неприемлемо для металлоис-кателей, которые всегда работают в реальном масштабе времени.

Селективность по металлам на таких частотах, весьма далеких от оптимальной, проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Металлоискатель по принципу электронного частотомера

Положительной для практики стороной является простота конструкции датчика и электронной части металлоис-кателей на биениях и по принципу частотомера. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета.

Однокатушечный металлоискатель индукционного типа

Слово "индукционный" в названии металлоискателей данного типа полностью раскрывает принцип их работы, если вспомнить смысл слова "inductio" (лат.) - наведение. Прибор данного типа имеет в составе датчика одну катушку любой удобной формы, возбуждаемую переменным сигналом. Появление вблизи датчика металлического предмета вызывает появление отраженного (переизлученного сигнала), который "наводит" в катушке дополнительный сигнал -электрический. Остается этот дополнительный сигнал только выделить.

Металлоискатель индукционного типа получил право на жизнь, главным образом, из-за основного недостатка приборов по принципу "передача-прием" - сложности конструкции датчиков. Эта сложность приводит либо к высокой стоимости и трудоемкости изготовления датчика, либо к его недостаточной механической жесткости, что обусловливает появление ложных сигналов при движении и снижает чувствительность прибора.

Рис. 3. Структурная схема входного узла индукционного металлоискателя

Если задаться целью исключить у приборов по принципу "передача-прием" этот недостаток путем устранения самой его причины, то можно прийти к необычному выводу - излучающая и приемная катушки у металлоискателя должны быть объединены в одну! В самом деле, весьма нежелательные перемещения и изгибы одной катушки относительно другой в данном случае отсутствуют, так как катушка только одна и она одновременно и излучающая, и приемная. Налицо также предельная простота датчика. Платой за эти преимущества является необходимость выделения полезного отраженного сигнала на фоне значительно большего сигнала возбуждения излучающей/приемной катушки.

Выделить отраженный сигнал можно, если вычесть из электрического сигнала, присутствующего в катушке датчика, сигнал той же формы, частоты, фазы и амплитуды, что и сигнал в катушке при отсутствии металла вблизи. *Как это можно реализовать одним из способов, показано на рис. 3.

Генератор вырабатывает переменное напряжение синусоидальной формы с постоянной амплитудой и частотой. Преобразователь "напряжение-ток" (ПНТ) преобразует напряжение генератора Ur в ток Iг, который задается в колебательный контур датчика. Колебательный контур состоит из конденсатора С и катушки L датчика. Его резонансная частота равна частоте генератора. Коэффициент преобразования ПНТ выбирается таким, чтобы напряжение колебательного контура ид равнялось напряжению генератора Ur (в отсутствие металла вблизи датчика). Таким образом, на сумматоре происходит вычитание двух сигналов одинаковой амплитуды, а выходной сигнал - результат вычитания -равен нулю. При появлении металла вблизи датчика возникает отраженный сигнал (иными словами, меняются параметры катушки датчика), и это приводит к изменению напряжения колебательного контура 11д. На выходе появляется сигнал, отличный от нуля.

На рис. 3 приведен лишь простейший вариант одной из схем входной части металлоискателей рассматриваемого типа. Вместо ПНТ в данной схеме в принципе возможно использование токозадающего резистора. Могут быть использованы различные мостовые схемы для включения катушки датчика, сумматоры с различными коэффициентами передачи по инвертирующему и неинвертирующему входам, частичное включение колебательного контура и т.д.

В схеме на рис. 3 в качестве датчика используется колебательный контур. Это сделано для простоты, чтобы получить нулевой сдвиг фаз между сигналами Ur и 11д (контур настроен на резонанс). Можно отказаться от колебательного контура с необходимостью точной настройки его на резонанс и использовать в качестве нагрузки ПНТ только катушку датчика. Однако коэффициент передачи ПНТ для этого случая должен быть комплексным, чтобы скорректировать сдвиг фазы на 90°, возникающий из-за индуктивного характера нагрузки ПНТ.

Импульсный металлоискатель

В рассмотренных ранее типах электронных металлоискателей отраженный сигнал отделяется от излучаемого либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно.

Применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. Как использовать это на практике? После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отраженный сигнал. Он и несет полезную информацию, его и надо регистрировать.

Таким образом, может быть предложена другая схема построения металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделения сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, которые могут быть совмещены в одну, устройства коммутации и блока обработки сигнала.

Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов - имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде десятков-сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.

Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в этом случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.

Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление коротких откликов прибора от массивных слабопрово-дящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить передачу сигнала с приемной катушки на блок обработки сигнала.

Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов. К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

Магнитометры

Магнитометрами называется обширная группа приборов, предназначенных для изменения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью говорить о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железным предметом.

По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1 м, а легковой автомобиль - на расстоянии 10 м! Такая большая дальность обнаружения объясняется следующим. Аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное (в масштабах поиска) магнитное поле Земли. Поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а всего лишь третьей степени расстояния.

Принципиальным недостатком магнитометров является невозможность обнаружения с их помощью предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно - в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.п.). Однако при поиске затонувших танков и кораблей такие приборы вне конкуренции!

Радиолокаторы

Общеизвестен факт, что с помощью современных радиолокаторов можно обнаружить самолет на расстоянии нескольких сотен километров. Возникает вопрос: неужели современная электроника не позволяет создать компактное устройство, позволяющее обнаруживать интересующее нас предметы хотя бы на расстоянии нескольких метров9 Ответом является ряд публикаций, в которых такие устройства описаны.

Типичным для них является применение достижений современной микроэлектроники СВЧ, компьютерной обработки полученного сигнала. Использование современных высоких технологий практически делает невозможным самостоятельное изготовление этих устройств. Кроме того, большие габаритные размеры пока не позволяют их широко применять в полевых условиях.

К преимуществам радиолокаторов следует отнести принципиально более высокую дальность обнаружения -отраженный сигнал в грубом приближении можно считать подчиняющимся законам геометрической оптики и его ослабление пропорционально не шестой и даже не третьей, а лишь второй степени расстояния.

В основе работы миноискателя ИМП лежит принцип индуктивного (или индукционного) баланса. Основа индукционного баланса - несколько катушек индуктивности, одна передающая и одна или две приёмные, образующие индуктивный датчик. Все катушки размещены в пространстве таким образом, что бы сигнал с передающей катушки при отсутствии поблизости металлических предметов не наводился на приёмные (или наводился, но сигнал, наведённый в одной катушке, вычитался бы из сигнала другой катушки), то есть вся система была бы сбалансирована и сигнал на выходе был бы равен нулю. Если теперь поблизости от датчика появится металлический объект, то баланс нарушится и на выходе появится сигнал рассогласования, который можно будет усилить. Более подробно принцип индукционного баланса описан в статье История металлоискателей .

В миноискателе ИМП применён цилиндрический датчик, содержащий три катушки - передающую TX, расположенную в центре датчика, и две приёмные RX (рис. 1.). Все катушки расположены в одной плоскости, обе приёмные катушки размещены симметрично относительно передающей. В тот момент, когда ток в передающей катушке направлен по часовой стрелке, то токи в приёмных катушках будут направлены в противоположную сторону. Это происходит из-за того, что наводки тока между ближайшими частями витков двух рядом находящихся катушек будут сильнее, чем между более удалёнными частями витков катушек.

Рис. 1. Схема расположения катушек в датчике миноискателя ИМП

Для того, что бы получить нулевой сигнал, сигналы с приёмных катушек следует подать на сумматор, как показано на рисунке 2. Здесь обе приёмные катушки включены противофазно - начало одной катушки и конец другой соединены с общим проводом, так что на суммирующий резистор подаются противофазные сигналы, которые взаимно компенсируются. При малейшем нарушении баланса системы на сумматоре появляется сигнал рассогласования, этот сигнал усиливается резонансным усилителем и подаётся на головные телефоны.

Рис. 2. Упрощённая схема металлодетектора, поясняющая принцип индукционного баланса.

В реальной схеме миноискателя ИМП (рис. 3.) используется несколько иной принцип компенсации остаточного сигнала. Здесь вместо суммирующего резистора применён трансформатор, и небольшая часть сигнала с задающего генератора подмешивается в остаточный сигнал. Величину и фазу сигнала, поступающего с задающего генератора можно регулировать переменными резисторами таким образом, что бы этот сигнал был равен по амплитуде и противоположен по фазе остаточному сигналу, так что на выходе системы установится нулевой сигнал.

Рис. 3. Упрощённая схема миноискателя ИМП

Такой способ позволяет компенсировать не только дисбаланс катушек, но и наводки задающего генератора на входные цепи усилителя.

Электронная схема миноискателя ИМП

Рабочая частота миноискателя ИМП - 1,5 кГц. Потребляемый ток - не более 28 мА. Напряжение питания - от 5,0 до 6,2 В (4 элемента 373). Время непрерывной работы от одного комплекта свежих элементов питания - 100 часов.

На рисунке 4 изображена электрическая схема миноискателя. Она состоит из генератора, вырабатывающего частоту 1,5 кГц, устройства компенсации и резонансного усилителя с рабочей частотой 1,5 кГц и с коэффициентом усиления по напряжению примерно 1000 раз.

Генератор выполнен по двухтактной схеме на двух транзисторах Т1 и Т2 типа МП15. Генераторная катушка частично включена в коллекторные цепи транзисторов. Индуктивность передающей катушки составляет 45 мГн, число витков - 970 провода ПЭВ-0,33, отводы сделаны примерно от четверти витков, считая с каждой стороны. Сопротивление обмотки - 13 Ом. Катушка имеет стальной сердечник. Рабочая частота генератора зависит от индуктивности этой катушки и ёмкости конденсатора С1.

Приёмные катушки имеют индуктивность по 400 мГн, они содержат по 3500 витков провода ПЭВ-0,1, намотанного на каркасе диаметром примерно 35 мм.

Использование двухтактного генератора в схеме миноискателя ИМП обусловлено несколькими причинами - во-первых, в то время, когда разрабатывался этот миноискатель, в наличии были только транзисторы одной структуры - p-n-p. Во-вторых, для питания схемы двухтактного генератора на транзисторах одной структуры потребуется меньшее напряжение по сравнению с другими схемами генераторов.

Схема компенсации выполнена на резисторах R1 - R8 и конденсаторах С1 и С2. Переменными резисторами R5, R8 осуществляется грубая регулировка амплитуды и фазы, а резисторами R2, R7 - плавная.

Переменное напряжение поступает в схему компенсации с одного из отводов генераторной катушки.

Рис 4. Принципиальная электрическая схема миноискателя ИМП:
ПК - приёмная катушка - 400 мГн; ГК - генераторные катушки - по 45 мГн; Т1, Т2 - МП15; Т3..Т5 - МП13Б;
R1, R3 - 39к; R2 - 22к; R4,R6 - 4,7мОм; R5 - 100к; R7,R8 - 47к; R9 - 3к; R10 - 6,2к; R11 - 2,2к; R12 - 240; R13 - 5,6к;
R14 - 4,3к; R15 - 10к; R16 - 120; R17,R18 - 8,2к; R19 - 4,3к; R20,R29 - 82; R21,R26 - 4,7к;
R22,R27 - 1к; R23 - 270; R24 - 2,7к; R25 - 39; R28 - 120;
C1 - 5,1пФ; C2 - 27пФ; C3,C4 - 3,3нФ; C5 - 10нФ; C6 - 25мкФ; C7,C9 - 680пФ; C8,C10,C13 - 0,25мкФ; C12 - 3,3нФ;
Тф - Телефоны головные ТА-56М

На транзисторах Т3..Т5 типа МП13Б выполнен резонансный усилитель. Сигнал на его вход поступает со вторичной обмотки понижающего трансформатора Тр, коэффициент трансформации которого составляет примерно 3:1. Так как входное сопротивление первого каскада усилителя, выполненного на транзисторе Т1 относительно невысоко, то применение понижающего трансформатора позволяет согласовать низкоомный вход усилителя с высоким выходным сопротивлением приёмных катушек. Так же осуществляется согласование других каскадов - здесь используются трансформаторы с коэффициентом трансформации 1:8, первичные обмотки которых включены частично в цепи коллекторов транзисторов Т4, Т5. Такое частичное включение (включена 1/4 часть витков) позволяет избежать ухудшения добротности. Совместно с конденсаторами С7, С9 первичные обмотки обоих трансформаторов образуют резонансные контуры, настроенные на частоту 1,5 кГц. Головные телефоны ТА-56М, включённые в коллекторную цепь транзистора Т5 совместно с конденсатором С12 образуют резонансный контур, настроенный на ту же частоту, что позволяет повысить громкость звука в наушниках.

При подаче напряжения питания на схему запускается задающий генератор, и вокруг генераторной катушки образуется переменное магнитное поле. Это поле наводится в обоих приёмных катушках, в результате чего в них начинает течь переменный ток. Приёмные катушки соединены таким образом, что бы токи, протекающие в них, взаимно компенсировались и система была бы сбалансирована. Из-за технических трудностей, не позволяющих изготовить поисковый элемент с идеально правильным взаимным расположением приёмных катушек и из-за разброса величин индуктивностей, во встречно включённых катушках всегда будет присутствовать какой-то остаточный сигнал. Что бы его подавить, применяется схема компенсации.

Если рядом с датчиком миноискателя отсутствуют металлические предметы и системой компенсации подавлен остаточный сигнал, то на входе резонансного усилителя сигнал будет отсутствовать. Если теперь поблизости от поискового датчика появится металлический объект, то из-за возмущения магнитного поля система разбалансируется, и на входе усилителя появится сигнал, который можно будет услышать в наушниках.

В любительской и профессиональной поисковой практике большое значение придаётся используемому в процессе работы оборудованию, представленному металлоискателем того или иного класса. Всем тем, кто мечтает собрать этот прибор своими руками, будет полезно понять принцип действия металлоискателя, а также узнать, из каких основных деталей он состоит.

Что такое металлоискатель

Металлоискателем принято называть специальное электронное устройство, посредством которого удаётся находить металлические вещи и изделия, скрытые в непрозрачных средах. Последними могут быть:

  • Грунты любого качества и состава;
  • Стены зданий и сооружений из материалов различного типа;
  • Толща жидких и водных сред, а также тела живых существ и многое другое.

Известно множество разновидностей детекторов металла, различающихся своей конструкцией и методом формирования чувствительного электромагнитного поля. С их помощью удаётся организовать поиск невидимых в грунте изделий из самых различных металлов, включая медь, алюминий и ржавое железо. Для освоения технических приёмов обращения с этим прибором, в первую очередь, необходимо ознакомиться с его устройством и понять принцип работы металлоискателей.

Комплектующие изделия и их назначение

Для того чтобы понять, как работают металлоискатели, прежде всего, следует ознакомиться с теми узлами и деталями, которые обеспечивают их работоспособность.

Классические приборы для поиска металлоизделий включают в свой состав следующие основные узлы:

  • Электронная схема с чувствительными индуктивными датчиками (катушками);
  • Ручка-держатель, состоящая из комплекта штанг, на одной из которых монтируется чувствительный датчик в виде рамки;
  • Блок управления с усилительным модулем и элементами индикации (формирования звукового сигнала), крепящийся на ответном конце держателя.

Рассмотрим каждую из перечисленных выше составляющих более подробно.

Электронный чувствительный контур

Эта часть металлодетектора состоит из двух типов катушек, используемых в качестве чувствительных датчиков: приёмной и передающей. Она выполняется в виде пластиковой конструкции, по своей форме напоминающей эллипс или овал, соединяющийся с помощью сигнального кабеля непосредственно с блоком управления.

Обратите внимание! Для обустройства такого соединения, как правило, используется специальный разъем, который легко размыкается при необходимости (для ремонта усилителя или системы датчиков, например).

Крепление контура на корпусе штанги осуществляется посредством проушин, по своему виду напоминающих хомуты с фиксирующими болтами. Во избежание попадания внутрь катушек влаги и грязи они (как и их сочленение с кабелем) делаются полностью герметичными.

Штанги держателя изготавливаются из металлических или пластиковых пустотелых трубок, предназначенных для крепления поисковой катушки с возможностью регулировки угла наклона по отношению к исследуемой поверхности. На нижней штанге имеется специальный механизм, позволяющий регулировать положение пульта по высоте (за счёт изменения длины перекрытия со средней трубкой).

Средняя штанга играет роль промежуточного звена, связывающего две крайние части ручки-держателя. Она обеспечивает стыковку нижней трубы с поисковой рамкой и верхнего участка трубы с закреплённым на ней управляющим блоком. В некоторых моделях металлоискателей применяется держатель, в комплект которого входят только две штанги.

Верхняя часть изделия для удобства переноски и обращения с прибором иногда выполняется в виде изогнутого в форме S держателя, используемого в качестве удобного подлокотника.

Управляющий узел

Эта часть металлоискателя располагается в непосредственной близости от оператора и содержит модуль, обеспечивающий работу всего устройства в целом. С его помощью осуществляется функциональная обработка поступающих с датчиков сигналов, а также их вывод на специальный дисплей.

Дополнительная информация. В простейших и устаревших моделях металлоискателей в качестве отображающего табло используется обычный стрелочный индикатор.

В большинстве современных изделий в этом же модуле находится батарейный отсек с размещёнными в нём элементами питания.

Типы металлоискателей, принцип работы

Все известные образцы металлодетекторов по особенностям устройства электронного чувствительного датчика подразделяются на следующие типы:

  • Детекторы, работающие по схеме «приём-передача»;
  • Устройства индукционного типа;
  • Приборы с импульсной обработкой полезной информации.

Большинство известных моделей детекторов, относящихся к изделиям средней ценовой категории, – это приборы, работающие по схеме «приём-передача». Принцип действия их поисковых устройств основан на генерации и приёме электромагнитного излучения определённой частоты. Основа чувствительной рамки такого прибора – две индуктивные катушки, одна из которых является передающей, а другая – приёмной (она же называется поисковой).

Первая из них излучает э/м волны, пронизывающие нейтральную среду и отражающиеся от появляющихся на пути распространения металлических предметов. Чувствительная поисковая (приёмная) катушка улавливает отражённый сигнал, который затем усиливается и подаётся на исполнительную часть схемы. Размещённый в пульте управления модуль преобразует поступивший сигнал и выводит результаты измерений на ж/к дисплей.

Принцип действия устройств с детектором индукционного типа схож с уже описанным выше алгоритмом, но имеет одно существенное отличие от него. Оно заключается в том, что в этом случае функцию приёмного и передающего контура выполняет одна и та же катушка.

Обратите внимание! Особенностью функционирования рассмотренных моделей является зависимость их чувствительности от состояния грунта. Значительное содержание в нём различных примесей (солей, например) вызывает ослабление отражённого сигнала и его маскировку на фоне помех.

Именно по этой причине устройства такого типа перед началом работы тщательно настраиваются путём выбора режима измерений с поправкой на качество исследуемого участка почвы.

В отличие от рассмотренных ранее образцов, импульсные металлоискатели не столь чувствительны к составу (минерализации) самого грунта. В основу конструкции поисковой рамки заложен тот же принцип, что и в индуктивной катушке. Однако в этом случае с её помощью вырабатываются импульсные воздействия, создающие на поверхностях изделий из металла так называемые «вихревые токи».

Именно эти электромагнитные образования являются откликом для приёмной катушки, улавливающей отражённый сигнал.

Важно! Такой принцип обнаружения металлических предметов не позволяет эффективно идентифицировать различные типы металлов, что существенно ограничивает возможности детектора.

Таким образом, по используемому в чувствительном датчике принципу обнаружения металлов все известные виды детекторов могут заметно отличаться один от другого. При выборе подходящего для решения конкретных задач изделия обязательно нужно учитывать эти различия.

Подготовка к работе (отстройка)

Основным моментом подготовки любого прибора к работе является так называемая «отстройка от земли», позволяющая поддерживать чувствительность прибора на нужном уровне (независимо от состояния и качества грунта). Такая процедура обязательна для моделей с аналоговыми характеристиками поискового сигнала, работающими по схеме «приём-передача». Для импульсных устройств она имеет определённую специфику, связанную с выбором способа отстройки.

Необходимость в её проведении объяснятся особенностями исследуемых грунтов, которые в подавляющем большинстве случаев являются железосодержащими, то есть вызывающими реакцию прибора. В связи с этим отражённый от таких почв сигнал может иметь амплитуду в сотни раз большую полезного импульса, так что обнаружить металл в обычном режиме практически невозможно.

Для устранения этого эффекта разработчиками используется фазовая составляющая, которая не меняется в процессе проведения писка (сдвиг фаз всегда остаётся постоянным). При правильной её отстройке можно добиться состояния, при котором никакие манипуляции с индуктивной рамкой, включая её подъём и опускание, не вызовут изменения показаний на пульте прибора. О таком детекторе металлов можно будет сказать, что он хорошо отстроен от земли.

По способу проведения этой операции все известные образцы детекторов делятся на модели с ручной и автоматической отстройкой.

Ручная

Большинство импульсных поисковых приборов имеет встроенную систему ручной отстройки по грунту. Это значит, что при выборе режима работы оператор должен самостоятельно вращать специальную ручку до появления в наушниках характерного щелчка или зуммера. Пользоваться ручным режимом очень сложно, если постоянная времени интегратора (ПВИ) электронной схемы очень мала, вследствие чего во многих цифровых устройствах он намеренно увеличивается.

Обратите внимание! Того же эффекта удаётся добиться, если при поиске металлов рамку перемещать очень медленно.

Не возникает проблем с выбором требуемого режима в ситуациях, когда импульсный принцип используется в условиях подводного поиска, так как быстро перемещать катушку в плотной среде невозможно физически. Примерно тот же эффект, но с небольшой поправкой на чувствительность, наблюдается при работах, проводимых в прибрежной зоне.

Автоматическая

Этот вид отстройки чувствительности аппарата даёт определённые преимущества в ситуациях, когда поиск осуществляется на морском берегу или почве с большой концентрацией солей. Он позволяет эксплуатировать детектор на максимальном пределе его чувствительности без необходимости её корректировки.

Использование автоматического режима способствует повышению стабильности работы устройства и улучшает его помехозащищенность (за счёт больших значений коэффициента усиления, встроенного в схему операционного усилителя). Для того чтобы при обращении с таким металлоискателем не наблюдалось сбоев настройки, следует перемещать его рамку без задержек, то есть непрерывно.

В завершении обзора несколько слов о применении устройств с импульсным методом формирования поискового сигнала. Многие относят эти приборы к поисковому инструменту с ограниченными возможностями, поскольку они не годятся для работы в городских условиях (из-за больших количеств содержащего железо мусора). Основная сфера их применения – это поиски археологических артефактов в загородных условиях, характеризующихся отсутствием больших скоплений ферромагнитных составляющих.

Видео

0 Пользователей и 1 Гость просматривают эту тему.

Что же такое металлоискатель, и как ему удается различать металлы?

Металлоискатель - это электронное устройство, которое обнаруживает присутствие металла, не контактируя с ним (благодаря излучению радиоволн и улавливанию вторичных сигналов), и, обнаружив, информирует об этом факте оператора (звуковым сигналом, перемещением стрелки и т.д.).

При включении прибора в поисковой головке создается электромагнитное поле, которое распространяется в окружающую среду, будь то земля, камень, вода, дерево, воздух. На поверхности металлов, попавших в зону действия поисковой катушки, под действием электромагнитного поля возникают так называемые вихревые токи. Эти вихревые токи создают собственные встречные электромагнитные поля, приводящие к снижению мощности электромагнитного поля, создаваемого поисковой катушкой. Что и фиксируется электронной схемой прибора. Кроме того, это вторичное поле искажает конфигурацию основного поля, что также улавливается прибором. Электронная схема металлоискателя обрабатывает полученную информацию и сигнализирует об обнаружении металла. Вихревые токи образуются на поверхности любых металлических объектов или электропроводящих минералов. Такие металлы как золото, серебро, медь имеют высокую электропроводность по сравнению с железом, тонкой алюминиевой фольгой, никелем и минералами. Определение металла в объекте основано на измерении удельной электропроводности объекта.

Разница между дешевыми и дорогими моделями заключается лишь в методах излучения радиоволн и методах улавливания, обработки и интерпретации вторичных сигналов. Более дорогой прибор может определять с известной степенью вероятности вид обнаруженного металла до его извлечения, определять глубину его залегания, может отстраиваться от минералов грунта, а также иметь много различных дополнительных функций, увеличивающих производительность и эффективность поиска, которые отсутствуют у дешевых приборов.

Ассортимент металлодетекторов, предлагаемых фирмами производителями достаточно разнообразен и прежде, чем купить прибор, приходится иногда долго выбирать. На вопрос, "какой аппарат лучше всего?" сложно ответить. Но, чтобы хоть как-то определится с этим, надо задать себе вопрос, а для какой цели он нужен? ЦЕЛЬ - ОПРЕДЕЛЯЕТ СРЕДСТВО!


Как работает металлоискатель?

В технической литературе, посвящённой металлоискателям, используется много специальных терминов, поэтому хочется ознакомить вас с некоторыми из них.

Обозначение VLF (Very Low Frequency) означает очень низкую рабочую частоту МД.
Способность МД дискриминировать (распознавать) характер находки зависит от рабочей частоты прибора.
При высоких частотах усиливается явление скин-эффекта, и качество дискриминации значительно ухудшается.
Поэтому, вначале производители МД использовали очень низкие частоты около 2кГц (70-е, начало 80-х годов).
Это приводило к возникновению специфических проблем, потому, что на этих частотах, несмотря на хорошую чувствительность к меди и серебру, была снижена чувствительность к золоту и никелю, а при конструировании катушек возникали проблемы с качеством (добротностью).

Современные детекторы металла имеют широкий разброс по рабочей частоте, это обусловлено спецификой их применения, а также по инженерно-конструкторским соображениям. Чаще всего диапазон частот простирается от 6 до 20 кГц, но бывает и ниже. В этом частотном диапазоне приборы хорошо дискриминируют цели. Не возникает серьёзных проблем с конструкцией катушек.

Приборы для поиска золота используют повышенные частоты - до 15-20 кГц и выше. Это обусловлено ещё и тем, что на этих частотах улучшается чувствительность к очень мелким предметам, например - к золотым самородкам, часто имеющим мизерные размеры и малый вес.

В последние годы для повышения глубины и качества дискриминации стали использовать многочастотный поиск, который при определённых условиях даёт преимущества. С появлением дешёвых микропроцессоров этот метод получил сильный толчок в своём развитии. Но хочется сделать два важных замечания по поводу многочастотного поиска:

1. Значительного повышения глубины дискриминации по сравнению с одночастотными приборами этот метод не дает.
2. Увеличивается ассортимент мишеней, которые хорошо дискриминируются, но в случае сложной конфигурации последних может происходить их отсечение.

В процессе работы на местности может меняться характер грунта а, следовательно, и его минерализация. Для этого потребуется корректировка системы для компенсации влияния земли. Это делается как вручную, так и автоматически, если в детекторе имеется такой режим работы. Он получил обозначение Ground Track. Применение этого режима не рекомендуется при установке высокой чувствительности.

Термин VCO используется для обозначения звукового режима работы МД, при котором в зависимости от величины и глубины залегания объекта изменяется не только громкость звука, но и его тон. Это обостряет восприятие слухом малейшего изменения звукового сигнала.

Современные высококлассные металлодетекторы имеют богатый сервис, позволяющий опытному оператору вести плодотворный поиск с наименьшей затратой времени. Если поисковик дополнительно имеет представление о принципе работы металлодетектора и о его реальных возможностях, это приносит дополнительные дивиденды.

По мере усложнения конструкции прибора и увеличения его стоимости улучшается способность прибора распознавать металлический предмет без выкапывания. При различии стоимости в несколько раз, чувствительность детекторов увеличивается незначительно (чаще всего она составляет 20 - 35 см для монет и около 1 - 1.5 м для крупных находок). Однако более сложные приборы, оснащенные процессорами, могут дать заключение не только о составе металла и глубине находки, но и определить достоинство монеты.


Различают следующие основные подходы к построению схемотехники металлоискателей
Существует пять типов металлодетекторов (МД):

Устройства с BFO (зависимый генератор, метод биений)
Устройства, работающие по принципу расстройки
Устройства, работающие по принципу уравновешенной индукции (индукционный баланс)
Устройства, работающие по принципу импульсного индуктивного метода
Магнитометры.

1 Устройства с BFO (зависимый генератор, метод биений).
Устройства с BFO работают на основе определения малых изменений индуктивности поисковой катушки, под воздействием железных предметов. Метод характеризуется плохой чувствительностью.
BFO - beat frequency oscillation (метод биений). Измеряемым параметром является частота LC-генератора, который включает катушку поисковой головки. Частота сравнивается с эталоном, и полученная разностная частота биений выводится на звуковую индикацию. Схемотехника приборов достаточно проста, катушка не требует прецизионного исполнения. Рабочая частота 40 - 500 кГц. Чувствительность BFO-приборов невысокая, при низкой стабильности работы и слабой возможности отстраиваться от влажного и минерализированного грунта. Метод BFO применялся в серийных иностранных приборах в 60-70 годы. В настоящее время этот метод популярен у радиолюбителей и встречается в недорогих приборах российских производителей.

2 Устройства, работающие по принципу расстройки
OR - off resonance (срыв резонанса)
Устройства с расстройкой работают на основе определения малых изменений индуктивности поисковой катушки, под воздействием железных предметов. Метод характеризуется плохой чувствительностью.
OR - off resonance (срыв резонанса). Анализируемым параметром является амплитуда сигнала на катушке колебательного контура, настроенного близко к резонансу с подаваемым на него сигналом от генератора. Появление металла в поле катушки, вызывает или достижение резонанса, или уход от него, в зависимости от вида металла. Это приводит к увеличению или уменьшению амплитуды колебаний на катушке. Этот метод, также как и BFO, разрабатывался радиолюбителями, но сведений о его использовании в серийных приборах для поиска сокровищ не обнаружено.

3 Устройства, работающие по принципу уравновешенной индукции (индукционный баланс)
МД с уравновешенной индукцией стали стандартными детекторами для всеобщего использования. В поисковой головке у них расположены две катушки, одна из которых наводит переменное магнитное поле. Другая катушка расположена так, что поле в нормальном состоянии вокруг неё уравновешено, а на её выходе нет никакого электрического сигнала. В действительности в приемной катушке имеется так называемый остаточный сигнал, обусловленный не идеальностью конструкции. Металлические предметы, которые приближаются к катушкам, изменяют конфигурацию этого поля, разбалансируют систему, и в результате - на выходе приемной катушки появляется сигнал. Этот сигнал можно усилить и информировать оператора о находке. Современные МД, использующие этот принцип, имеют мощную электронику, обрабатывающую сигнал и дающую оператору массу дополнительной информации: относительную удельную проводимость металла, глубину залегания, и т.д.

3.1 TR (Transmitter-receiver) (передатчик-приемник)
Обозначение TR (Transmitter-receiver) означает «передатчик-приемник» и имеет отношение к МД, работающим по принципу индукционного баланса. Поисковую головку образуют две катушки, расположенных в одной плоскости и сбалансированных так, что при подаче сигнала в передающую катушку на выходах приемной присутствует минимальный сигнал. Передающая катушка включается в контур LC-генератора. Измеряемыми параметрами являются: амплитуда сигнала на приемной катушке и фазовый сдвиг между переданным и принятым синусоидальными сигналами. Рабочая частота ~20 Кгц.
Принцип TR (или его разновидность TR/VLF) предусматривает анализ фазовых характеристик сигнала, поэтому все они легко различают черные и цветные металлы, отстраиваются от мусора и грунта. Эти приборы имеют высокую чувствительность и разрешающую способность, которая зависит от диаметра головки - чем головка больше, тем глубже обнаружение, но тем труднее искать мелкие предметы.

3.2 TR/VLF (Transmitter-receiver / very low frequency) (передатчик-приемник / очень низкая частота).
VLF - разновидность TR метода, когда рабочая частота уменьшена до 1 - 10 Кгц, при обычной ~20 Кгц.
VLF - метод позволяет построить высокочувствительные приборы с хорошим различением металлов за счет анализа фазовых характеристик. Схемотехника приборов достаточно сложна, катушки требуют прецизионной балансировки. По этому методу сейчас строится большинство серийных приборов, в том числе и компьютеризованных. Дискриминация объектов и отстройка от грунта в таких приборах делается сравнительно просто с помощью фазосдвигающих цепей.

3.3 RF - radio frequency (радио частота) - высокочастотный вариант TR
RF - radio frequency (радио частота) - высокочастотный вариант TR, где передающая и приемная катушки образуют не плоский трансформатор, а разнесены в пространстве и расположены перпендикулярно друг к другу (У этих приборов имеются разнесённые, ортогонально расположенные катушки).

Некоторые изготовители МД использовали обозначение RF как дополнение к термину VLF, видимо для того, чтобы лишний раз подчеркнуть, что в основе работы устройства лежит принцип индукционного баланса.
Приемная катушка принимает отраженный от металлической поверхности сигнал, излучаемый передающей катушкой. Диапазон рабочих частот 50-500 Кгц. Этот тип детекторов металла появился в 30-х годах. Серьёзный недостаток их - большая реакция на минерализованный грунт. К их особенностям также следует отнести и невосприимчивость к мелким предметам.
При поиске крупных объектов, размером с литровую банку и больше, в условиях слабоминерализованного и несильно замусоренного грунта эти МД очень удобны. Этот метод используется в глубинных приборах и характеризуется нечувствительностью к мелким объектам и отсутствием различения металлов.
В современное время типичным представителем МД этого типа является Gemini-3 фирмы Fisher.

4 Устройства, работающие по принципу импульсного индуктивного метода PI - pulse induction (импульсная индукция).
PI - pulse induction (импульсная индукция). В приборах этого типа катушка поисковой головки не является частью колебательного контура. В нее от запускающего генератора подается импульсный сигнал. Анализируемым параметром является время окончания переходного процесса (положение заднего фронта импульса напряжения). К конструкции катушки не предъявляется особых требований. Отличительными чертами этого метода являются: низкая рабочая частота следования импульсов (50-400 Гц), большое потребление энергии, нечувствительность к грунту, не очень хорошее распознавание металлов, приборы не требуют периодической подстройки. PI-метод часто используется в подводных приборах для ослабления влияния воды. Импульсные детекторы имеют много достоинств: самые чувствительные среди всех детекторов, которые в современное время имеются, малочувствительны к влиянию земли, имеют простую конструкцию. При их работе используются магнитные импульсы, способные наводить ток во всех металлических предметах, попадающих в магнитное поле. В перерывах между импульсами, приёмник принимает отклик, который усиливается и обрабатывается электронной частью. При своих неоспоримых достоинствах они имеют и недостатки: для работы нужны мощные аккумуляторы, крайне чувствительны к мелким железным предметам. С середины 90-х годов многие импульсные МД стали снабжаться дискриминатором.
Отличительные особенности металлодетекторов, принципа действия PI:
Не требуют периодической подстройки.
Нечувствительность к грунту.
Не очень хорошее распознавание металлов.
Низкая рабочая частота
Большое потребление энергии.
Такой метод используется в подводных приборах для ослабления влияния воды, в таких как:
GARRETT: INFINIUM LS , SEA HUNTER MARK 2.
FISHER: IMPULSE.
Whites: SURF PI PRO.

Металлоискатели для поиска кладов и реликвий. Импульсные металлоискатели
В рассмотренных ранее трех типах электронных металлоискателей отраженный сигнал отделяется от излучаемого. либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно. Однако, применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается вследствие явления самоиндукции затухающий импульс тока, обуславливающий задержанный по времени отраженный сигнал. Таким образом, может быть предложена другая схема металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделения сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, устройства коммутации и блока обработки сигнала.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.
Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в данном случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.
Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление коротких откликов прибора от массивных слабопроводящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить беспрепятственную передачу сигнала с приемной катушки на блок обработки сигнала.
Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов.
К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

5 Магнитометры
Последний прибор использует принцип определения малых аномалий интенсивности земляного магнитного поля, но для поиска кладов в целом бесполезен, так как может детектировать только железные предметы.
Магнитометрами называется обширная группа приборов, предназначенных для измерения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью утверждать о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железным предметом.
По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1(м), а легковой автомобиль - на расстоянии 10(м). Такая большая дальность обнаружения объясняется тем, что аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное магнитное поле земли, поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а третьей степени расстояния.
Принципиальным недостатком магнитометров является невозможность обнаружения с помощью них предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно. Во-первых, в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.д) Во-вторых, магнитометры обычно громоздки и не предназначены для работы в движении.
Для примера бесполезности магнитометров при поиске кладов и реликвий можно привести такой пример. С помощью обычного компаса, который по сути является простейшим магнитометром, можно зарегистрировать обычное железное ведро на расстоянии около 0,5(м), что само по себе является неплохим результатом. Однако, попробуйте с помощью компаса найти то же ведро, спрятанное под землей, в реальных условиях.


В самом общем виде металлоискатели можно разделить на следующие группы (для поиска предметов разного типа):

Универсальные - для поиска мелких предметов (монет, украшений, самородков) на глубине до 40 см в грунте и крупных (размером с чайник и более) на глубине до 1 - 1,5 м. Как правило, это приборы, работающие на принципе "передатчик-приемник" с индукционным балансом. Передающая и приемная катушки расположены в одной плоскости и образуют поисковую головку. Диаметр головки 10-40 см (наиболее ходовой - 21 см).

Глубинные - для поиска только крупных предметов на глубине 2 - 6 м. Приборы используют принцип RF и катушки расположены на большом расстоянии друг от друга (50-100 см) в перпендикулярных плоскостях. Для этих целей используются и импульсные приборы с диаметром катушки 1 метр и более. Этими приборами хорошо искать сундуки, сейфы, потерянную технику и т. п., но они не чувствительны к монетам и другим мелким предметам и не различают металлы.

Детекторы локаторного типа, которые предназначены для поиска только определенного металла (например, золото, серебро их сплавы), используют эффект молекулярного резонанса. Эти приборы обладают большим радиусом поиска - до 100 м, и глубине поиска до 10 м. Особенно подходят для быстрой проверки больших территорий. Лучше всего их использовать в сочетании с обычным металлодетектором.

Подводные - герметичные приборы со специфической индикацией для поиска под водой с аквалангом. В большинстве эти приборы используют импульсный индукционный принцип, что существенно уменьшает влияние воды, как электропроводящей среды, на поиск. Глубина обнаружения импульсного прибора (не только подводного) обычно больше, чем у TR/VLF. Эти приборы не нуждаются в ручной подстройке, но испытывают затруднения в различении металлов.

Старательские - для преимущественного поиска отдельных объектов из драгоценных металлов (самородного золота, серебра). Обычно это TR/VLF приборы для поиска золота, оптимизированные для поиска мелких самородков, что требует иной рабочей частоты, чем у универсальных приборов.

Строительные - для поиска трубопроводов, кабелей, и иных подземных коммуникаций. Сюда же можно отнести магнитометры для поиска железа. Их принцип действия несколько отличен от индукционных металлоискателей.

Хорошие детекторы металла могут обладать множеством различных способностей, например, производить дискриминацию (распознание) мишеней, т.е. имеется возможность игнорировать различный мусор, не представляющий интереса.
Практически все современные МД имеют дискриминатор. Ещё одной особенностью хорошего МД является возможность исключения влияния земли на процесс поиска. Частично это решается с помощью "Фарадеевого" экрана вокруг катушек, причём лучшим считается экран, изготовленный из оксида железа. При самостоятельном конструировании МД экран изготавливается, как правило, из луженой тонкой медной фольги. Для более качественного подавления влияния земли используют специальные схемотехнические решения. Этот метод в зарубежной литературе получил название GEB (Ground Exclusion Balance) – исключение влияния земли. Надо отметить, что наличие у МД системы GEB, не всегда позволяет эффективно отстроиться от влияния грунта. К счастью, на территории нашей страны "тяжёлые" почвы встречаются очень редко. К "тяжёлым" грунтам можно отнести: сырой морской песок, красный глинозём, каменистые почвы и тд.



Импульсная индукция
ПЕРЕДАТЧИК
Устройство - поисковая катушка или рамки МД с импульсной индукцией - очень проста, сравнительно с СНЧ приборами. Единственная катушка с намотанным проводом используется как для передачи, так и для приема.
Передающая схема состоит из простого электронного ключа, который закорачивает эту катушку на короткое время на батарею питания. Сопротивление катушки очень мало, поэтому по катушке может протекать ток силой в несколько ампер. Хотя сила тока велика, но время его протекания очень коротко. Электронный ключ подаёт импульс тока в катушку, затем обрывает его и затем опять включается для подачи следующего импульса. Скважность, это отношение времени, за которое ток передается, к времени, когда ток выключен, составляет обычно около 4%. Это предохраняет передатчик и катушку от перегрева и уменьшает разряд батареи.
Скорость повторения импульсов (частота передатчика) типичного МД с импульсной индукцией составляет примерно 100 герц. Разные модели МД используют частоты от 22 герц до нескольких килогерц. Чем ниже частота передачи, тем больше излучаемая мощность.
На более низких частотах достигается большая глубина и чувствительность обнаружения предметов, сделанных из серебра, однако при этом падает чувствительность к никелю и сплавам золота. Такие приборы имеют замедленную реакцию, поэтому требуют очень медленного перемещения рамки.
Более высокие частоты повышают чувствительность к никелю и сплавам золота, однако менее чувствительны к серебру. Возможно, они не проникают так глубоко, как более низкие частоты. Что касается серебра, то при этом можно перемещать рамку более быстро. Это позволяет обшарить большую площадь за заданный период времени и также такие приборы более чувствительны к главным пляжным находкам – изделиям из золота.
Рамка приборов с импульсной индукцией, с которой мы начали этот раздел, состоит из единственной катушки провода, которая служит и для передачи, и для приёма. Передатчик действует подобно катушке зажигания автомобиля. Каждый импульс тока в передающей катушке создаёт магнитное поле. Когда ток обрывается, магнитное поле вокруг катушки внезапно исчезает, но в этот момент импульс напряжения противоположной полярности и большой амплитуды появляется на выводах катушки. Этот выброс напряжения называется противодействующей электродвижущей силой, или противо-ЭДС. В автомобиле это именно то высокое напряжение, которое поджигает искру в свече зажигания. В нашем случае МД с импульсной индукцией амплитуда выброса ниже – обычно от 100 до 130 вольт в пике. По длительности импульс очень небольшой – 30 миллионных долей секунды (30 микросекунд). Он называется "отраженным импульсом".

ПРИЕМНИК
От величины электрического сопротивления катушки с проводом зависит время затухания этого электрического импульса. Полное отсутствие сопротивления или, напротив, очень высокая его величина, заставит импульс “звенеть”. Это похоже на бросание резинового мячика на очень твердую поверхность, на которой он отскакивает многократно, прежде чем успокоится окончательно. При достаточном электрическом сопротивлении время затухания импульса укорачивается и отраженный импульс "сглаживается". Это аналогично бросанию резинового мячика в подушку. Мы заинтересованы в том, чтобы наш мячик прыгнул один раз, что, в случае с резиновым мячиком, можно описать, как бросание его на ковер. Про катушку детектора с импульсной индукцией говорят, что она критично заглушена, когда отраженный импульс быстро затухает до нуля без “звона”. Чрезмерное или недостаточное подавление будет вносить нестабильность в работу и маскировать хорошо проводящие металлы, такие, как золото, и уменьшать глубину обнаружения.
Когда металлический предмет находится поблизости от поисковой катушки, он запасает в себе некоторую часть энергии импульса, что приведёт к затягиванию процесса затухания этого импульса до нуля. Изменение в ширине отраженного импульса измеряется и сигнализирует о присутствии металлического объекта.
Для того, чтобы выделить сигнал такого объекта, мы должны измерить ту часть импульса, где он спадает к нулю (хвост). На входе приемника с катушки стоит резистор и ограничивающая диодная схема, которые обрезают напряжение входного импульса до величины 1 вольт, чтобы не перегружать вход схемы. Сигнал в приемнике состоит из импульса от передатчика и отраженного импульса. Обычно усиление приемника составляет 60 децибел. Это означает, что область, где отраженный сигнал спадает до нуля, можно увеличить в 1000 раз.

Схема стробирования
Усиленный сигнал от приемника поступает в схему, измеряющую время спадания напряжения до нуля. Отраженный импульс преобразуется в последовательность импульсов. Когда металлический предмет приближается к катушке, форма импульса передатчика не изменится, а вот отраженный импульс станет немного длиннее. Увеличение длительности "хвоста" импульса всего на несколько миллионных долей секунды (микросекунды) достаточно для того, чтобы определить наличие металла под катушкой. На этот отраженный импульс накладываются импульсы (стробы), синхронизованные с началом импульса передатчика, и на выходе электронной схемы получается серия стробов, количество которых пропорционально длине "хвоста" импульса.

Наиболее чувствительный импульс расположен максимально близко к концу хвоста там, где напряжение совсем близко к нулю. Обычно это временная область около 20-ти микросекунд после выключения передатчика и начала отраженного импульса. К сожалению, это так же область, где работа МД с импульсной индукцией становится неустойчивой. По этой причине большинство моделей МД с импульсной индукцией продолжают вырабатывать стробирующие импульсы еще 30-40 микросекунд после полного затухания отраженного импульса.

Интегратор
Далее стробированный сигнал должен быть преобразован в напряжение постоянного тока. Это выполнятся схемой – интегратором, который усредняет последовательность импульсов и преобразует их в соответствующее напряжение, которое возрастает, когда объект близко от рамки и уменьшается, когда объект удаляется. Напряжение дополнительно усиливается и управляет схемой звукового контроля.

Период времени, в течение которого интегратор собирает входящие стробы - постоянная времени интегратора (ПВИ) - определяет то, насколько быстро МД реагирует на металлический объект. Большая ПВИ (порядка секунд) имеет преимущество в уменьшении шума и упрощении настройки детектора, но при этом требует очень медленного перемещения рамки, поскольку объект может быть пропущен при быстром движении. Малая ПВИ (порядка десятых долей секунды) быстрее реагирует на цель, что позволяет быстрее двигать рамкой, но помехоустойчивость и стабильности работы ухудшаются.

ДИСКРИМИНАЦИЯ (распознавание)
МД с импульсной индукцией не способны к такой же степени дискриминации, как СНЧ приборы.
За счет измерения увеличивающегося периода времени между окончанием импульса передатчика и точкой, в которой отраженный импульс рассасывается до нуля (задержки), можно отфильтровать объекты, состоящие из определенных металлов. На первом месте по этой характеристике стоит алюминиевая фольга, затем мелкие никелевые монетки, пуговицы и золото. Некоторые монеты могут быть вычислены по очень длинному хвосту импульса, однако железо, таким образом, НЕ определяется.
Было сделано много попыток создать МД с импульсной индукцией, способный определять железо, однако все эти попытки имели очень ограниченный успех. Хотя железо и дает длинный "хвост", однако серебро и медь имеют такие же характеристики. Столь длительная задержка плохо влияет на определение глубины залегания. Содержание минералов в почве также будет удлинять отраженный импульс, изменяя точку, в которой объект определяется или отвергается. Если постоянная интегрирования настроена так, что золотое кольцо не определяется в воздухе, это же кольцо может "засветиться" в грунте, насыщенном солями. Таким образом, почва, насыщенная солями, изменяет всё, что относится к времени задержки и избирательной способности МД с импульсной индукцией.

ОТСТРОЙКА ОТ ЗЕМЛИ
Отстройка от земли является очень критичной для СНЧ приборов, но не для МД с импульсной индукцией. В среднем почва не запасает какого-либо значительного количества энергии от поисковой катушки и обычно сама не даёт никакого сигнала. Почва не будет маскировать сигнал от закопанного объекта и даже напротив, минерализация почвы слегка удлиняет сигнал пропорционально увеличению глубины залегания предмета. По отношению МД с импульсной индукцией часто применяется термин "автоматическая отстройка от земли" (automatic ground balance) они обычно не реагируют на избыточную минерализацию почвы и не требуют внешней подстройки для разных типов почвы.
Исключением является один из наиболее неприятных компонентов грунта - магнетит (Fe3O4), или магнитный оксид железа. Он вызывает перегрузку входных катушек детекторов СНЧ типа, сильно уменьшая их чувствительность. Детекторы с ИИ будут работать, но могут показывать ложные цели, если поднести катушку слишком близко к земле. Можно свести до минимума этот вредный эффект, удлинив время задержки между окончанием импульса передатчика и началом стробирования. Настраивая эту постоянную времени можно отстроиться от помех, вызванных минерализацией грунта.

АВТОМАТИЧЕСКАЯ И РУЧНАЯ НАСТРОЙКА
Большинство МД с импульсной индукцией имеют ручную настройку. Это означает, что оператор должен крутить настройку до тех пор, пока не послышится щелкающий или зудящий звук в наушниках. Если почва в районе поиска изменяется от ….. до нейтрального песка или от сухой почвы до морской воды, в этом случае подстройка необходима. Если этого не делать, можно потерять в глубине обнаружения и пропустить некоторые объекты. Ручная настройка очень затруднительна при использовании короткой ПВИ, поэтому многие приборы с ручной настройкой имеют длинную ПВИ и требуют медленного перемещения рамки.
Нет проблем с использованием МД с импульсной индукцией для подводного поиска, поскольку при этом поисковую катушку не перемещают быстро. При использовании в полосе прибоя, катушка будет находиться то в воде, то под водой, и при таких условиях использование приборов с ручной настройкой может вас сильно разочаровать, поскольку придется непрерывно подстраивать порог срабатывания. Некоторые операторы в таком случае сразу настраивают прибор чуть ниже порога срабатывания. Но это может привести к уменьшению глубины обнаружения, при изменении характеристик почвы.
Автоматическая настройка (SAT- self adjusting Threshold) дает значительное преимущество при поиске в и над соленой водой или на почве с высоким содержанием солей. Она позволяет использовать детектор на максимальной чувствительности без постоянной подстройки. Это улучшает стабильность работы, помехозащищенность и позволяет использовать больший коэффициент усиления. МД с импульсной индукцией не излучают сильные отрицательные сигналы как СНЧ приборы. Поэтому они не зашкаливают на ямах с минералами. Необходимо непрерывно перемещать рамку металлоискателя, оснащенного системой автоподстройки, поэтому если вы останавливаете рамку, настройка сбивается или прибор перестает реагировать.

Аудио контроль
Схемы звуковой сигнализации МД с импульсной индукцией распадаются на две категории: с изменяющейся частотой и изменяющейся громкостью. Схемы с изменяющейся частотой, построенные на основе генератора, управляемого напряжением, хорошие для регистрации небольших предметов. Поскольку изменение в частоте легче уловить на слух, чем изменение в громкости, особенно при небольшом уровне громкости, особенно для приборов с ручной подстройкой порога. Однако звук, похожий на пожарную сирену, быстро утомляет, а некоторые люди не способны различать высокие тона. Один из хороших вариантов - это механическая вибрация, которая первоначально использовалась для подводных аппаратов. Такой прибор издает клюкающие звуки и вибрацию, которая нарастает до жужжания при обнаружении объекта. Сигналы такого механического прибора легко распознать и они не заглушаются системой подачи воздуха.
Многие люди предпочитают более традиционный звуковой тон с нарастанием громкости, а не частоты. Такие системы звукового контроля работают хорошо в приборах, с быстрым перемещением рамки, т. e. в приборах с автоматической подстройкой, при этом они звучат аналогично приборам с СНЧ.

Выводы по МД с импульсной индукцией
Это специализированные инструменты. Они мало пригодны для поиска монет в городских условиях, поскольку не могут отфильтровать железный (ферросодержащий) мусор. Могут быть использованы для археологических поисков в сельской местности, где нет железного мусора в больших количествах. Они предназначены для поисков на максимальной глубине в экстремальных условиях, таких как побережья морей или места, где земля сильно минерализирована. Такие МД показывают отличные результаты в подобных условиях и в целом сравнимы с СНЧ приборами, особенно по их способностям отстраиваться от таких грунтов и "пробивать" их на максимальную глубину.

Ручной металлодетектор (досмотровый металлоискатель ) - носимое устройство, используемое во время досмотра, при помощи которого можно определить наличие скрытых металлических предметов у досматриваемого.

Его используют для поиска металлических предметов скрыто проносимых под одеждой или в багаже. Ручные детекторы, как правило, используются в двух случаях: для локализации предмета, обнаруженного с помощью стационарного прибора, и в ситуациях, когда досмотр провести необходимо, а использование стационарной системы по ряду причин невозможно.

В первую очередь нужно обратить внимание на следующие характеристики:

1. чувствительность;
2. селективность;
3. индикация;
4. определение параметров объекта;
5. питание;
6. конструктивное исполнение

Принцип действия металлодетектора , основан на пересечении двух электромагнитных полей: того, которое создает прибор, и того, которое излучает металлический предмет под воздействием чужого электромагнитного поля.

Такое взаимодействие посылает информацию в схемы, которая уже преобразуется в звуковой или световой сигнал, издаваемый ручным металлодетектором . Чтобы это взаимодействие произошло, необходимо провести прибором в непосредственной близости от искомого предмета.


Устройство ручных металлодетектеров

Ручные металлодетекторы изготавливают из пластика. У более прогрессивных моделей, материал ударопрочный и водонепроницаемый. Такие улучшения позволяют пользоваться прибором на открытом воздухе во время дождя, а также в тяжелых условиях.

Вес варьируется в пределах 200-500 гр. Ручка у некоторых моделей обрезиненна для лучшего удержания. На многих устройствах предусмотрены крепления для ношения прибора на ремне в защитном чехле.

На ручке закреплен страховочный ремешок, для удобного и безопасного ношения в руке. Кнопка включения, лампочки индикации цели, динамики и отсек под батарейки в зависимости от модели прибора могут располагаться по-разному.

Ознакомиться с полным ассортиментом металлодетекторов: арочных, ручных и специализированных - вы сможете, перейдя по ссылке . Так же, можете заказать интересующий Вас металлодетектор по привлекательной цене, а наши специалисты проконсультируют по интересующему вопросу.

Функции

Раньше металлодетекторы были ограничены дальностью и могли засечь предмет только с близкого расстояния. У современного прибора, чувствительность на крупный предмет размером с пистолет, 20–25 см. Нож такой детектор найдет на расстоянии 12-15 см, связку ключей с 8-10 см.

Опытный пользователь по звуку определяет величину найденного предмета. Разные тональности в зависимости от дальности центра электромагнитного поля позволяют сделать такие подсчеты. В наушниках, которыми комплектуются многие ручные металлодетекторы, это сделать намного проще.


Для работы в условиях с недостаточным освещением, во многих приборах есть функция подсветки.

В некоторых случаях возникает необходимость устранить из поиска мелкие цели, и акцентировать внимание на крупных. Для этого можно воспользоваться функцией уменьшения чувствительности. С ее помощью отсекаются мелкие предметы вроде монет, пуговиц, колец, и сигнал идет только на достаточно большие предметы. Такая избирательность особенно пригодится в ходе антитеррористических мероприятий.

Достоинства

К достоинствам досмотрового детектора в первую очередь стоит отнести компактность. Не везде есть возможность установить арочные металлодетекторы, а вот поставить человека с прибором в руке, можно практически в любом месте.

Простота использования, по принципу: "включил и работай", делает их использование повсеместным, и не требует от человека специальных знаний.

Применение



Обычно применяются совместно с турникетами при личном досмотре на пропускных пунктах в общественных местах, на предприятиях, таможенных постах.

Используются жилищно-коммунальными хозяйствами и обслуживающим персоналом для проведения ремонтных работ связанных с поиском металлических предметов в стенах и напольных покрытиях. Применяются спецслужбами для проверки корреспонденции и багажа.

Качественный ручной металлодетектор в руках у службы охраны - залог безопасности охраняемого объекта. Помимо этого, при работе с хорошим прибором, ускоряется процесс досмотра, что увеличивает пропускную способность.

Этот факт немаловажен при организации общественных мероприятий с большим скоплением людей (футбольные матчи, концерты, выборы).

Отдельно стоит упомянуть о ручном металлодетекторе с функцией поиска радиоактивных веществ. Такой прибор будет незаменим на предприятиях ядерно-промышленного комплекса и на военных объектах. Сотрудник охраны, оснащенный таким прибором, не допустит выноса опасных веществ за пределы предприятия.

Эксплуатация

Досмотровые детекторы абсолютно безопасны, и вопреки расхожему мнению не излучают каких-то вредных лучей. Такие приборы работают в низкочастотном диапазоне и не вредят людям, в том числе беременным женщинам и лицам, у которых установлен кардиостимулятор.

Но в то же время, главное не переусердствовать и не прикреплять к чувствительному элементу какие-либо металлические предметы, которые могут вызвать тревогу. Это вызовет его разбалансировку и уменьшит эффективность обнаружения.

Производители и Модели ручных металлодетектеров

Garrett


Компания Garrett была основана в США в 1964 году, семейной парой по фамилии Гаррет. Приоритетом фирмы было создание металлоискателя доступного по цене и простого в использовании.

В 1980 году фирма выпускала уже весь спектр поисковой и досмотровой техники, а так же световых и звуковых извещателей. Помимо грунтовых металлоискателей, на конвейер было поставлено производство арочных и ручных металлодетекторов.

И по сей день фирма Garrett является одним из мировых лидеров в данной отрасли. А то, что ручными металлодетекторами экипируются спецслужбы многих стран мира, говорит о качестве выпускаемой продукции. и

Сфинкс

ЗАО Сфинкс образовалось в 1992 году в Москве. Специализируется на производстве ручных досмотровых металлодетекторов . За время существования ЗАО Сфинкс, компания сотрудничала как с государственными охранными службами, так и с ЧОП.

По статистике каждый второй сотрудник силовых структур РФ, оснащен детектором фирмы «Сфинкс» Производители позиционируют металлоискатель «Сфинкс» как лучший на сегодняшний день на рынке, по соотношению цены и качества. И, если сравнивать с зарубежными конкурентами, «Сфинкс» значительно уступает им в цене.

Еще одной особенностью которой производители наделяют продукт - использование детектора в целях самообороны. Конструкция и материал детектора настолько крепки, что выдерживают сильные удары. Металлодетекторы это фирмы имеют световой, звуковой сигнал и вибросигнал.

E-sun

Продукцию E-sun выпускает международная корпорация Eastern Company, главный офис которой базируется в США, а заводы по изготовлению в Китае. Явным преимуществом ручных металлодетекторов выпускаемых под этой маркой, стоит отметить приемлемую цену и качество подтвержденное на практике.

В линейке моделей присутствуют детекторы с увеличенным временем автономной работы без подзарядки. Легкий вес и стиль исполнения прибора представляется еще одним преимуществом.

Основное преимущество ручных металлоискателей E-Sun заключается, в первую очередь, в невысокой цене. Благодаря удобному чехлу и небольшому весу устройств, сотрудники служб безопасности могут постоянно носить металлодетекторы E-Sun с собой и использовать их в любой момент.

Блокпост


Ручной металлодетектор Блокпост и .

CEIA

Итальянский производитель, один из признанных лидеров на рынке. Товар имеет европейское качество. и

Top